Content deleted Content added
Netheril96 (talk | contribs) m math format fix |
|||
Line 7:
== Mathematical formulation ==
For simplicity consider a [[two-state quantum system|two-level atomic system]] with [[
: <math>H_0=\hbar\omega_0|\text{e}\rangle\langle\text{e}|</math>.
Suppose the atom
<math>\vec{E}( e.g. : <math>
where <math>\vec{d}</math> is the [[transition dipole moment|dipole moment operator]] of the atom. The total Hamiltonian for the atom-light system is therefore <math>H=H_0+
: <math>\vec{d}=\vec{d}_{\text{eg}}|\text{e}\rangle\langle\text{g}|+\vec{d}_{\text{eg}}^*|\text{g}\rangle\langle\text{e}|</math>
(with
: <math>
-\hbar\left(\tilde{\Omega}^*e^{-i\omega_Lt}+\Omega^*e^{i\omega_Lt}\right)|\text{g}\rangle\langle\text{e}|</math>
where <math>\Omega=\hbar^{-1}\vec{d}_\text{eg}\cdot\vec{E}_0</math> is the [[Rabi frequency]] and <math>\tilde{\Omega}:=\hbar^{-1}\vec{d}_\text{eg}\cdot\vec{E}_0^*</math> is the counter-rotating frequency. To see why the <math>\tilde{\Omega}</math> terms are called `counter-rotating' consider a [[unitary transformation]] to the [[Interaction picture|interaction or Dirac picture]] where the transformed Hamiltonian <math>
: <math>
-\hbar\left(\tilde{\Omega}^*e^{-i(\omega_L+\omega_0)t}+\Omega^*e^{i\Delta t}\right)|\text{g}\rangle\langle\text{e}|,</math>
where <math>\Delta:=\omega_L-\omega_0</math> is the detuning
=== Making the approximation ===
This is the point at which the rotating wave approximation is made. The dipole approximation has been assumed, and for this to remain valid the electric field must be near [[resonance]] with the atomic transition. This means that <math>\Delta\ll\omega_L+\omega_0</math> and the complex exponentials multiplying <math>\tilde{\Omega}</math> and <math>\tilde{\Omega}^*</math> can be considered to be rapidly oscillating. Hence on any appreciable time scale the oscillations will quickly average to 0. The rotating wave approximation is thus the claim that these terms
: <math>\bar{H}_\text{RWA}=-\hbar\Omega e^{-i\Delta t}|\text{e}\rangle\langle\text{g}|▼
-\hbar\Omega^*e^{i\Delta t}|\text{g}\rangle\langle\text{e}|.</math>
Finally,
: <math>
▲H_\text{RWA}=\hbar\omega_0|\text{e}\rangle\langle\text{e}|
-\hbar\Omega e^{-i\omega_Lt}|\text{e}\rangle\langle\text{g}|
-\hbar\Omega^*e^{i\omega_Lt}|\text{g}\rangle\langle\text{e}|.
|