Content deleted Content added
m Dating maintenance tags: {{Fact}} |
No edit summary |
||
Line 7:
In 2010, Andrew Stothers gave an improvement to the algorithm, <math>O(n^{2.3736}).</math><ref>{{Citation | last1=Stothers | first1=Andrew | title=On the Complexity of Matrix Multiplication | url=http://www.maths.ed.ac.uk/pg/thesis/stothers.pdf | year=2010}}.</ref> In 2011, Virginia Williams combined a mathematical short-cut from Stothers' paper with her own insights and automated optimization on computers, improving the bound to <math>O(n^{2.3727}).</math><ref>{{Citation | last1=Williams | first1=Virginia | title=Breaking the Coppersmith-Winograd barrier | url=http://www.cs.berkeley.edu/~virgi/matrixmult.pdf | year=2011}}</ref>
The Coppersmith–Winograd algorithm is frequently used as a building block in other algorithms to prove theoretical time bounds
However, unlike the Strassen algorithm, it is not used in practice because it only provides an advantage for matrices so large that they cannot be processed by modern hardware.<ref>{{Citation | last1=Robinson | first1=Sara | title=Toward an Optimal Algorithm for Matrix Multiplication | url=http://www.siam.org/pdf/news/174.pdf | year=2005 | journal=SIAM News | volume=38 | issue=9}}</ref>
|