Triangular matrix: Difference between revisions

Content deleted Content added
MathMartin (talk | contribs)
worked on introduction
MathMartin (talk | contribs)
rewrote definition
Line 4:
== Definition ==
 
A=== Triangular matrix ''L'' of the form===
 
A matrix
:<math> \mathbf{L}=
\begin{pmatrix}
Line 15 ⟶ 17:
</math>
 
is called '''lower triangular matrix''' or '''left triangular matrix'''. If the diagonal entries in ''L'' are one
 
Analogously a matrix
:<math> \mathbf{U} =
\begin{pmatrix}
u_{1 ,1} & u_{1,2} & u_{1,3} & \ldots & u_{1,m} \\
& 1 u_{2,2} & u_{2,3} & \ldots & u_{2,m} \\
& & \ddots & \ddots & \vdots \\
& & & \ddots & u_{n-1,m}\\
0 & & & & 1u_{n,m}
\end{pmatrix}
</math>
 
the matrix is called '''unit upper triangular matrix''' or '''normed upperright triangular matrix'''.
 
=== Normed triangular matrix ===
 
A lower triangular matrix where entries in the main diagonal are one
 
:<math> \mathbf{L} =
Line 27 ⟶ 46:
</math>
 
the matrix is called '''unit lower triangular matrix''' or '''normed lower triangular matrix'''.
 
Analogously the matrix
The matrix ''L''<sub>i</sub>
 
:<math> \mathbf{U} =
\begin{pmatrix}
1 & u_{1,2} & u_{1,3} & \ldots & u_{1,m} \\
& 1 & u_{2,3} & \ldots & u_{2,m} \\
& & \ddots & \ddots & \vdots \\
& & & \ddots & u_{n-1,m}\\
0 & & & & 1
\end{pmatrix}
</math>
the matrix is called '''unit upper triangular matrix''' or '''rightnormed upper triangular matrix'''. If the diagonal entries in ''U'' are one
 
=== Atomic triangular matrix ===
 
The matrix
:<math> \mathbf{L}_i =
\begin{pmatrix}
Line 37 ⟶ 71:
& & l_{i+1,i} & \ddots & & \\
& & \vdots & & \ddots & \\
0 & & l_{n,i} & 0 & & 1 \\
\end{pmatrix}
</math>
is called '''atomic''' lower triangular''' matrix.
 
Analogously athe matrix ''U'' of the form
:<math> \mathbf{U}_i =
\begin{pmatrix}
u_{1,1} & u_{ 1,2} & u_{1,3} & \ldots & u_ l_{1,mi} & & 0 \\
& u_{2,2}\ddots & u_{2,3} & \ldotsvdots & & u_{2,m} \\
& & \ddots & \ddotsl_{i-1,i} & \vdots & \\
& & & 1 & \ddots & u_{n-1,m} \\
0 & & & & u_{n,m} \ddots & \\
0 & & & & & 1 \\
\end{pmatrix}
</math>
is called '''atomic upper triangular''' matrix.
 
is called '''upper triangular matrix''' or '''right triangular matrix'''. If the diagonal entries in ''U'' are one
:<math> \mathbf{U} =
\begin{pmatrix}
1 & u_{1,2} & u_{1,3} & \ldots & u_{1,m} \\
& 1 & u_{2,3} & \ldots & u_{2,m} \\
& & \ddots & \ddots & \vdots \\
& & & \ddots & u_{n-1,m}\\
0 & & & & 1
\end{pmatrix}
</math>
the matrix is called '''unit upper triangular matrix''' or '''normed upper triangular matrix'''.
 
== Notes ==