Triangular matrix: Difference between revisions

Content deleted Content added
MathMartin (talk | contribs)
rewrote definition
MathMartin (talk | contribs)
fixed definition
Line 1:
In the [[mathematics | mathematical]] discipline of [[linear algebra]], a '''triangular matrix''' is a special kind of [[Matrix_(mathematics)|square matrix]] where the entries below or above the [[main diagonal]] are zero.
Because [[Matrix_(mathematics)|matrix]] equations with triangular matrices are easy to solve they are very important in [[numerical analysis]]. The [[LU decomposition]] gives an algorithm to decompose any [[invertible matrix]] ''A'' into a normed lower triangle matrix ''L'' and an upper triangle matrix ''U''.
 
== Definition ==
Line 13:
l_{3,1} & l_{3,2} & \ddots & & \\
\vdots & \vdots & \ddots & \ddots & \\
l_{nN,1} & l_{nN,2} & \ldots & l_{nN,mN-1} & l_{nN,mN}
\end{pmatrix}
</math>
Line 22:
:<math> \mathbf{U} =
\begin{pmatrix}
u_{1,1} & u_{1,2} & u_{1,3} & \ldots & u_{1,mN} \\
& u_{2,2} & u_{2,3} & \ldots & u_{2,mN} \\
& & \ddots & \ddots & \vdots \\
& & & \ddots & u_{nN-1,mN}\\
0 & & & & u_{nN,mN}
\end{pmatrix}
</math>
Line 42:
l_{3,1} & l_{3,2} & \ddots & & \\
\vdots & \vdots & \ddots & \ddots & \\
l_{nN,1} & l_{nN,2} & \ldots & l_{nN,mN-1} & 1
\end{pmatrix}
</math>
Line 52:
:<math> \mathbf{U} =
\begin{pmatrix}
1 & u_{1,2} & u_{1,3} & \ldots & u_{1,mN} \\
& 1 & u_{2,3} & \ldots & u_{2,mN} \\
& & \ddots & \ddots & \vdots \\
& & & \ddots & u_{nN-1,mN}\\
0 & & & & 1
\end{pmatrix}
Line 64:
 
The matrix
:<math> \mathbf{L}_i_n =
\begin{pmatrix}
1 & & & & & 0 \\
& \ddots & & & & \\
& & 1 & & & \\
& & l_{in+1,in} & \ddots & & \\
& & \vdots & & \ddots & \\
0 & & l_{nN,in} & & & 1 \\
\end{pmatrix}
</math>
Line 77:
 
Analogously the matrix
:<math> \mathbf{U}_i_n =
\begin{pmatrix}
1 & & & l_{1,in} & & 0 \\
& \ddots & & \vdots & & \\
& & \ddots & l_{in-1,in} & & \\
& & & 1 & & \\
& & & & \ddots & \\