Content deleted Content added
CyborgTosser (talk | contribs) product, sequence |
CyborgTosser (talk | contribs) sets |
||
Line 28:
===Sequence===
The ''sequence construction'', denoted by <math>\mathcal{A} = \mathfrak{G}\{\mathcal{B}\}</math> is defined as
:<math>\mathfrak{G}\{\mathcal{B}\} = \mathcal{E} + \mathcal{B} + (\mathcal{B} \times \mathcal{B}) + (\mathcal{B} \times \mathcal{B} \times \mathcal{B}) + \ldots</math>
In other words, a sequence is the neutral element, or an element of <math>\mathcal{B}</math>, or an ordered pair, ordered triple, etc. This leads to the relation
:<math>A(z) = 1 + B(z) + B(z)^{2} + B(z)^{3} + \ldots = \frac{1}{1 - B(z)}</math>
===Set===
The ''set'' (or ''powerset'') ''construction'', denoted by <math>\mathcal{A} = \mathfrak{P}\{\mathcal{B}\}</math> is defined as
:<math>\mathfrak{P}\{\mathcal{B}\} = \prod_{\beta \in \mathcal{B}}(\mathcal{E} + \{\beta\})</math>
which leads to the relation
:<math>\begin{matrix}A(z) & = & \prod_{\beta \in \mathcal{B}}(1 + z^{|\beta|}) \\
& = & \prod_{n=1}^{\infty}(1 + z^{n})^{B_{n}} \\
& = & \exp \left ( \ln \prod_{n=1}^{\infty}(1 + z^{n})^{B_{n}} \right ) \\
& = & \exp \left ( \sum_{n = 1}^{\infty} B_{n} \ln(1 + z^{n}) \right ) \\
& = & \exp \left ( \sum_{n = 1}^{\infty} B_{n} \cdot \sum_{k = 1}^{\infty} \frac{(-1)^{k}z^{nk}}{k} \right ) \\
& = & \exp \left ( \sum_{k = 1}^{\infty} \frac{(-1)^{k}}{k} \cdot \sum_{n = 1}^{\infty}B_{n}z^{nk} \right ) \\
& = & \exp \left ( \sum_{k = 1}^{\infty} \frac{(-1)^{k} B(z^{k})}{k} \right )
\end{matrix}</math>
[[Category:combinatorics]]
|