Jacobi eigenvalue algorithm: Difference between revisions

Content deleted Content added
Changed the S to S' transformation as per the definition of the Givens rotation matrix by the related wikipedia article. A clear example can be seen here: http://physics.bc.edu/MSC/430/LINEAR_EIGEN/JacobiContinued.html
Line 18:
Let ''S'' be a symmetric matrix, and ''G'' = ''G''(''i'',''j'',''θ'') be a [[Givens rotation|Givens rotation matrix]]. Then:
 
:<math>S'=G^\top S G^\top \, </math>
 
is symmetric and [[similar (linear algebra)|similar]] to ''S''.