Content deleted Content added
+prime counting function pi(n)+ME |
+sum of (the distinct) primes dividing n |
||
Line 14:
:hence ''c''<sub>4</sub>(1)=4 ≠ 1.
*
* π (''n''), the [[Prime number theorem|Prime counting function]]
* ''a''<sub>''0''</sub>(''n'') - the sum of primes dividing ''n'', sometimes called sopfr(''n''). We have ''a''<sub>''0''</sub>(1) = 0 ≠ 1, ''a''<sub>''0''</sub>(2 · 5) = ''a''<sub>''0''</sub>(10) = 7 and ''a''<sub>''0''</sub>(2) ''a''<sub>''0''</sub>(5) = 2 · 5 = 10 ≠ 7([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001414 SIDN A001414]).
* ''a''<sub>''1''</sub>(''n'') - the sum of the distinct primes dividing ''n'', sometimes called sopf(''n''). We have ''a''<sub>''1''</sub>(1) = 0 ≠ 1, ''a''<sub>''1''</sub>(2 · 5) = ''a''<sub>''1''</sub>(10) = 7 and ''a''<sub>''1''</sub>(2) ''a''<sub>''1''</sub>(5) = 2 · 5 = 10 ≠ 7([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A008472 SIDN A008472]).
|