Arithmetic function: Difference between revisions

Content deleted Content added
+prime counting function pi(n)+ME
+sum of (the distinct) primes dividing n
Line 14:
:hence ''c''<sub>4</sub>(1)=4 &ne; 1.
 
* the [[Partition function]] ''P''(''n''), the [[Partition function]] - the number of representations of ''n'' as a sum of positive integers, where we don't distinguish between different orders of the summands. For instance: ''P''(2 · 5) = ''P''(10) = 42 and ''P''(2)''P''(5) = 2 · 7 = 14 &ne; 42.
 
* &pi; (''n''), the [[Prime number theorem|Prime counting function]] &pi; (''n'') - the number of [[prime number|primes]] less than or equal to a given number ''n''. We have &pi;(1) = 0 &ne; 1, &pi; (2 &middot; 5) = &pi;(10) = 4 and &pi;(2) &pi;(5) = 1 &middot; 3 = 3 &ne; 4.
 
* ''a''<sub>''0''</sub>(''n'') - the sum of primes dividing ''n'', sometimes called sopfr(''n''). We have ''a''<sub>''0''</sub>(1) = 0 &ne; 1, ''a''<sub>''0''</sub>(2 &middot; 5) = ''a''<sub>''0''</sub>(10) = 7 and ''a''<sub>''0''</sub>(2) ''a''<sub>''0''</sub>(5) = 2 &middot; 5 = 10 &ne; 7([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001414 SIDN A001414]).
 
* ''a''<sub>''1''</sub>(''n'') - the sum of the distinct primes dividing ''n'', sometimes called sopf(''n''). We have ''a''<sub>''1''</sub>(1) = 0 &ne; 1, ''a''<sub>''1''</sub>(2 &middot; 5) = ''a''<sub>''1''</sub>(10) = 7 and ''a''<sub>''1''</sub>(2) ''a''<sub>''1''</sub>(5) = 2 &middot; 5 = 10 &ne; 7([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A008472 SIDN A008472]).