Swendsen–Wang algorithm: Difference between revisions

Content deleted Content added
m Efficiency: typos
Line 48:
 
<math>\frac{P_{\lbrace\sigma\rbrace\rightarrow\lbrace\sigma'\rbrace}}{P_{\lbrace\sigma'\rbrace\rightarrow\lbrace\sigma\rbrace}}=\frac{Pr\left(\lbrace\sigma'\rbrace|B.C.\right)Pr\left(B.C.|\lbrace\sigma\rbrace\right)}{Pr\left(\lbrace\sigma\rbrace|B.C.\right)Pr\left(B.C.|\lbrace\sigma'\rbrace\right)}=\frac{p\cdot \exp\left[-2\beta\sum\limits_{<l,m>}\delta_{\sigma_l,\sigma_m}J_{lm}\right]}{p\cdot \exp\left[-2\beta\sum\limits_{<l,m>}\delta_{\sigma'_l,\sigma'_m}J_{lm}\right]}
=exp{-\beta\Delta E}</math>
 
since <math>\Delta E=-\sum\limits_{<l,m>}J_{lm}\left(\sigma'_l \sigma'_m - \sigma_l \sigma_m\right)=-\sum\limits_{<l,m>}J_{lm}\left[\delta_{\sigma'_l,\sigma'_m}-\left(1-\delta_{\sigma'_l,\sigma'_m}\right)-\delta_{\sigma_l,\sigma_m}+\left(1-\delta_{\sigma'_lsigma_l,\sigma'_msigma_m}\right)\right]=-2\sum\limits_{<l,m>}J_{lm}\left(\delta_{\sigma'_l,\sigma'_m}-\delta_{\sigma_l,\sigma_m}\right)</math>.
 
This is valid for every bond configuration the system can pass through during its evolution, so detailed balance is satisfied for the total transition probability. This proves that the algorithm works.
 
 
== Efficiency ==