Multivariate gamma function: Difference between revisions

Content deleted Content added
another source
No edit summary
Line 1:
In [[mathematics]], the '''multivariate gamma function''', Γ<sub>''p''</sub>(·), is a generalization of the [[gamma function]]. It is useful in [[multivariate statistics]], appearing in the [[probability density function]] of the [[Wishart distribution|Wishart]] and [[inverse Wishart distribution]]s, and the [[matrix variate beta distribution]].
 
It has two equivalent definitions. One is given as the following integral over the <math>p \times p</math> [[positive-definite matrix|positive-definite]] real matrices:
Line 48:
 
:it follows that
::<math>
::<math>\frac{\partial \Gamma_p(a)}{\partial a} = \pi^{p(p-1)/4}\prod_{j=1}^p \Gamma(a+(1-j)/2) \sum_{i=1}^p \psi(a+(1-i)/2) = \Gamma_p(a)\sum_{i=1}^p \psi(a+(1-i)/2).</math>
\begin{align}
::<math>\frac{\partial \Gamma_p(a)}{\partial a} & = \pi^{p(p-1)/4}\prod_{j=1}^p \Gamma(a+(1-j)/2) \sum_{i=1}^p \psi(a+(1-i)/2) = \Gamma_p(a)\sum_{i=1}^p \psi(a+(1-i)/2).</math>[4pt]
& = \Gamma_p(a)\sum_{i=1}^p \psi(a+(1-i)/2).
\end{align}
</math>
 
{{no footnotes|date=May 2012}}