Content deleted Content added
another source |
No edit summary |
||
Line 1:
In [[mathematics]], the '''multivariate gamma function'''
It has two equivalent definitions. One is given as the following integral over the <math>p \times p</math> [[positive-definite matrix|positive-definite]] real matrices:
Line 48:
:it follows that
::<math>
::<math>\frac{\partial \Gamma_p(a)}{\partial a} = \pi^{p(p-1)/4}\prod_{j=1}^p \Gamma(a+(1-j)/2) \sum_{i=1}^p \psi(a+(1-i)/2) = \Gamma_p(a)\sum_{i=1}^p \psi(a+(1-i)/2).</math>▼
\begin{align}
▲
& = \Gamma_p(a)\sum_{i=1}^p \psi(a+(1-i)/2).
\end{align}
</math>
{{no footnotes|date=May 2012}}
|