Content deleted Content added
Peterzlondon (talk | contribs) mNo edit summary |
Peterzlondon (talk | contribs) mNo edit summary |
||
Line 12:
# Model specification. One or more forward models (DCMs) are specified for each subject's data.
#Model estimation. The model(s) are fitted to the data to determine their evidence and parameters.
# Model comparison.
The key steps are briefly reviewed below.
== Experimental design ==
Functional neuroimaging experiments are typically task-based or examine brain activity at rest ([[Resting state fMRI|resting state]]). In task-based experiments, brain responses are evoked by known deterministic inputs (experimentally controlled stimuli) that embody designed changes in sensory stimulation or cognitive set. These experimental or exogenous variables can change neural activity in one of two ways. First, they can elicit responses through direct influences on specific brain regions. This would include, for example, [[Evoked potential|sensory evoked responses]] in the early visual cortex. The second class of inputs exerts their effects vicariously, through a modulation of the coupling among nodes, for example, the influence of attention on the processing of sensory information. These two types of input - driving and modulatory - are
Resting state experiments have no experimental manipulations within the period of the neuroimaging recording. Instead, the interest is in the endogenous fluctuations in brain connectivity during the scan, or in the differences in connectivity between scans or subjects. The DCM framework includes models and procedures for analysing resting state data, described below.
== Model specification ==
Dynamic Causal Models (DCMs) are nonlinear state-space models in continuous time, parameterized in terms of directed effective connectivity between brain regions. Unlike [[Bayesian network|Bayesian Networks]], DCMs can be cyclic, and unlike [[Structural equation modeling|Structural Equation modelling]] and [[Granger causality]], DCM does not depend on the theory of Martingales, i.e., it does not assume that random fluctuations' are serially uncorrelated. All models in DCM have the following basic form:
<math>\begin{align}
Line 31 ⟶ 29:
\end{align}</math>
The first line describes the change in neural activity <math>z</math> with respect to time <math>\dot{z}</math>
==== Functional MRI ====
The neural model in DCM for fMRI uses a simple mathematical device - a [[Taylor series|Taylor approximation]] - to capture the gross causal causal influences between brain regions and their change due to experimental inputs. This is coupled with a detailed biophysical model of the generation of the BOLD response and the MRI signal, based on the Balloon model of Buxton et al.<ref>{{Cite journal|last=Buxton|first=Richard B.|last2=Wong|first2=Eric C.|last3=Frank|first3=Lawrence R.|date=1998-06|title=Dynamics of blood flow and oxygenation changes during brain activation: The balloon model|url=http://dx.doi.org/10.1002/mrm.1910390602|journal=Magnetic Resonance in Medicine|volume=39|issue=6|pages=855–864|doi=10.1002/mrm.1910390602|issn=0740-3194}}</ref>
Support for resting state analysis was first introduced in Stochastic DCM<ref>{{Cite journal|date=2011-09-15|title=Generalised filtering and stochastic DCM for fMRI|url=https://www.sciencedirect.com/science/article/pii/S1053811911001406|journal=NeuroImage|language=en|volume=58|issue=2|pages=442–457|doi=10.1016/j.neuroimage.2011.01.085|issn=1053-8119}}</ref>, which estimates both neural fluctuations and connectivity parameters in the time ___domain using a procedure called [[Generalized filtering|Generalized Filtering]]. A faster and more accurate solution for resting state data was introduced which operates in the frequency ___domain, called DCM for Cross-Spectral Densities (CSD) <ref>{{Cite journal|last=Friston|first=Karl J.|last2=Kahan|first2=Joshua|last3=Biswal|first3=Bharat|last4=Razi|first4=Adeel|date=2014-07|title=A DCM for resting state fMRI|url=http://dx.doi.org/10.1016/j.neuroimage.2013.12.009|journal=NeuroImage|volume=94|pages=396–407|doi=10.1016/j.neuroimage.2013.12.009|issn=1053-8119}}</ref><ref>{{Cite journal|last=Razi|first=Adeel|last2=Kahan|first2=Joshua|last3=Rees|first3=Geraint|last4=Friston|first4=Karl J.|date=2015-02|title=Construct validation of a DCM for resting state fMRI|url=https://doi.org/10.1016/j.neuroimage.2014.11.027|journal=NeuroImage|volume=106|pages=1–14|doi=10.1016/j.neuroimage.2014.11.027|issn=1053-8119|pmc=PMC4295921|pmid=25463471}}</ref>. Both of these can be applied to large-scale brain networks by using priors based on functional connectivity<ref>{{Cite journal|last=Seghier|first=Mohamed L.|last2=Friston|first2=Karl J.|date=2013-03|title=Network discovery with large DCMs|url=https://doi.org/10.1016/j.neuroimage.2012.12.005|journal=NeuroImage|volume=68|pages=181–191|doi=10.1016/j.neuroimage.2012.12.005|issn=1053-8119|pmc=PMC3566585|pmid=23246991}}</ref><ref name=":4">{{Cite journal|last=Razi|first=Adeel|last2=Seghier|first2=Mohamed L.|last3=Zhou|first3=Yuan|last4=McColgan|first4=Peter|last5=Zeidman|first5=Peter|last6=Park|first6=Hae-Jeong|last7=Sporns|first7=Olaf|last8=Rees|first8=Geraint|last9=Friston|first9=Karl J.|date=2017-10|title=Large-scale DCMs for resting-state fMRI|url=https://doi.org/10.1162/NETN_a_00015|journal=Network Neuroscience|language=en|volume=1|issue=3|pages=222–241|doi=10.1162/netn_a_00015|issn=2472-1751|pmc=PMC5796644|pmid=29400357}}</ref>. Another recent development for resting state analysis is Regression DCM<ref>{{Cite journal|last=Frässle|first=Stefan|last2=Lomakina|first2=Ekaterina I.|last3=Razi|first3=Adeel|last4=Friston|first4=Karl J.|last5=Buhmann|first5=Joachim M.|last6=Stephan|first6=Klaas E.|date=2017-07|title=Regression DCM for fMRI|url=https://doi.org/10.1016/j.neuroimage.2017.02.090|journal=NeuroImage|volume=155|pages=406–421|doi=10.1016/j.neuroimage.2017.02.090|issn=1053-8119}}</ref> implemented in the Tapas software collection (see [[#Software implementations|Software implementations]]). Regression DCM operates in the frequency ___domain, but linearizes the model under certain simplifications, such as having a fixed (canonical) haemodynamic response function. The enables
==== EEG / MEG / LFP ====
EEG and MEG data support
* Physiological models:
Line 48 ⟶ 46:
*** DCM for LFP (Local Field Potentials) <ref>{{Cite journal|last=Moran|first=R.J.|last2=Kiebel|first2=S.J.|last3=Stephan|first3=K.E.|last4=Reilly|first4=R.B.|last5=Daunizeau|first5=J.|last6=Friston|first6=K.J.|date=2007-09|title=A neural mass model of spectral responses in electrophysiology|url=http://dx.doi.org/10.1016/j.neuroimage.2007.05.032|journal=NeuroImage|volume=37|issue=3|pages=706–720|doi=10.1016/j.neuroimage.2007.05.032|issn=1053-8119}}</ref>. Extends DCM for ERP by added the effects of specific ion channels on spike generation.
*** Canonical Microcircuit (CMC) <ref>{{Cite journal|last=Bastos|first=Andre M.|last2=Usrey|first2=W. Martin|last3=Adams|first3=Rick A.|last4=Mangun|first4=George R.|last5=Fries|first5=Pascal|last6=Friston|first6=Karl J.|date=2012-11|title=Canonical Microcircuits for Predictive Coding|url=http://dx.doi.org/10.1016/j.neuron.2012.10.038|journal=Neuron|volume=76|issue=4|pages=695–711|doi=10.1016/j.neuron.2012.10.038|issn=0896-6273}}</ref>. Used to address hypotheses about laminar-specific ascending and descending signals in the brain, which are thought to underpin [[predictive coding]]. This model splits the single pyramidal cell population from DCM for ERP into deep and superficial populations.
***Neural Field Model (NFM) <ref>{{Cite journal|last=Pinotsis|first=D.A.|last2=Friston|first2=K.J.|date=2011-03|title=Neural fields, spectral responses and lateral connections|url=http://dx.doi.org/10.1016/j.neuroimage.2010.11.081|journal=NeuroImage|volume=55|issue=1|pages=39–48|doi=10.1016/j.neuroimage.2010.11.081|issn=1053-8119}}</ref>. Extends the models above into the spatial ___domain,
** Conductance models:
***Neural Mass Model (NMM) and Mean-field model (MFM)<ref>{{Cite journal|last=Marreiros|first=André C.|last2=Daunizeau|first2=Jean|last3=Kiebel|first3=Stefan J.|last4=Friston|first4=Karl J.|date=2008-08|title=Population dynamics: Variance and the sigmoid activation function|url=http://dx.doi.org/10.1016/j.neuroimage.2008.04.239|journal=NeuroImage|volume=42|issue=1|pages=147–157|doi=10.1016/j.neuroimage.2008.04.239|issn=1053-8119}}</ref><ref>{{Cite journal|last=Marreiros|first=André C.|last2=Kiebel|first2=Stefan J.|last3=Daunizeau|first3=Jean|last4=Harrison|first4=Lee M.|last5=Friston|first5=Karl J.|date=2009-02|title=Population dynamics under the Laplace assumption|url=http://dx.doi.org/10.1016/j.neuroimage.2008.10.008|journal=NeuroImage|volume=44|issue=3|pages=701–714|doi=10.1016/j.neuroimage.2008.10.008|issn=1053-8119}}</ref>. These
****
* Phenomenological models:
**DCM for phase coupling<ref>{{Cite journal|last=Penny|first=W.D.|last2=Litvak|first2=V.|last3=Fuentemilla|first3=L.|last4=Duzel|first4=E.|last5=Friston|first5=K.|date=2009-09|title=Dynamic Causal Models for phase coupling|url=http://dx.doi.org/10.1016/j.jneumeth.2009.06.029|journal=Journal of Neuroscience Methods|volume=183|issue=1|pages=19–30|doi=10.1016/j.jneumeth.2009.06.029|issn=0165-0270}}</ref>. Models the interaction of brain regions as Weakly Coupled Oscillators (WCOs), in which the rate of change of phase of one oscillator is related to the phase differences between itself and other oscillators
== Model estimation ==
Model inversion or estimation is implemented in DCM using
Model estimation also provides estimates of the parameters <math>p(\theta|y)</math>, for example the connection strengths, which maximise the free energy. Where models differ only in their priors, [[Bayesian model reduction|Bayesian Model Reduction]] can be used to rapidly the derive the evidence and parameters for nested or reduced models == Model comparison ==
Neuroimaging studies typically investigate effects which are conserved at the group level, or which differ between subjects. There are two predominant approaches for group-level analysis: random effects Bayesian Model Selection (BMS) <ref>{{Cite journal|last=Rigoux|first=L.|last2=Stephan|first2=K.E.|last3=Friston|first3=K.J.|last4=Daunizeau|first4=J.|date=2014-01|title=Bayesian model selection for group studies — Revisited|url=http://dx.doi.org/10.1016/j.neuroimage.2013.08.065|journal=NeuroImage|volume=84|pages=971–985|doi=10.1016/j.neuroimage.2013.08.065|issn=1053-8119}}</ref> and Parametric Empirical Bayes (PEB) <ref name=":1">{{Cite journal|last=Friston|first=Karl J.|last2=Litvak|first2=Vladimir|last3=Oswal|first3=Ashwini|last4=Razi|first4=Adeel|last5=Stephan|first5=Klaas E.|last6=van Wijk|first6=Bernadette C.M.|last7=Ziegler|first7=Gabriel|last8=Zeidman|first8=Peter|date=2016-03|title=Bayesian model reduction and empirical Bayes for group (DCM) studies|url=https://doi.org/10.1016/j.neuroimage.2015.11.015|journal=NeuroImage|volume=128|pages=413–431|doi=10.1016/j.neuroimage.2015.11.015|issn=1053-8119|pmc=PMC4767224|pmid=26569570}}</ref>. Random effects BMS posits that subjects differ in terms of which model generated their data - e.g. drawing a random subject from the population, there would be a 25% chance that their
# Specify and estimate multiple DCMs per subject, where each DCM (or set of DCMs) embodies a hypothesis.
# Perform random effects BMS to estimate the proportion of subjects whose data were generated by each model
# Perform Bayesian Model Averaging, which is a weighted average over the parameters of the DCMs. This means that models with greater probability contribute more to the average than
# Specify a single 'full' DCM per subject, which contains all connectivity parameters of interest.
# Specify a Bayesian General Linear Model
# Test hypotheses by comparing the full group-level model to reduced group-level models where certain combinations of connections have been switched off.
Line 75:
* Face validity establishes whether the parameters of a model can be recovered from simulated data. This has been performed with the development of each new model (E.g. <ref name=":2" /><ref name=":3" />).
* Construct validity assesses consistency with other analytical methods.
* Predictive validity assesses the ability to predict known or expected effects. This has included testing against iEEG / EEG / stimulation <ref>{{Cite journal|last=David|first=Olivier|last2=Guillemain|first2=Isabelle|last3=Saillet|first3=Sandrine|last4=Reyt|first4=Sebastien|last5=Deransart|first5=Colin|last6=Segebarth|first6=Christoph|last7=Depaulis|first7=Antoine|date=2008-12-23|title=Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation|url=http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0060315|journal=PLOS Biology|language=en|volume=6|issue=12|pages=e315|doi=10.1371/journal.pbio.0060315|issn=1545-7885|pmc=PMC2605917|pmid=19108604}}</ref><ref>{{Cite journal|last=David|first=Olivier|last2=Woźniak|first2=Agata|last3=Minotti|first3=Lorella|last4=Kahane|first4=Philippe|date=2008-02|title=Preictal short-term plasticity induced by intracerebral 1 Hz stimulation|url=https://doi.org/10.1016/j.neuroimage.2007.11.005|journal=NeuroImage|volume=39|issue=4|pages=1633–1646|doi=10.1016/j.neuroimage.2007.11.005|issn=1053-8119}}</ref><ref>{{Cite journal|last=Reyt|first=Sébastien|last2=Picq|first2=Chloé|last3=Sinniger|first3=Valérie|last4=Clarençon|first4=Didier|last5=Bonaz|first5=Bruno|last6=David|first6=Olivier|date=2010-10|title=Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation|url=http://dx.doi.org/10.1016/j.neuroimage.2010.05.021|journal=NeuroImage|volume=52|issue=4|pages=1456–1464|doi=10.1016/j.neuroimage.2010.05.021|issn=1053-8119}}</ref><ref>{{Cite journal|last=Daunizeau|first=J.|last2=Lemieux|first2=L.|last3=Vaudano|first3=A. E.|last4=Friston|first4=K. J.|last5=Stephan|first5=K. E.|date=2013|title=An electrophysiological validation of stochastic DCM for fMRI|url=http://dx.doi.org/10.3389/fncom.2012.00103|journal=Frontiers in Computational Neuroscience|volume=6|doi=10.3389/fncom.2012.00103|issn=1662-5188}}</ref> and against known pharmacological treatments <ref>{{Cite journal|last=Moran|first=Rosalyn J.|last2=Symmonds|first2=Mkael|last3=Stephan|first3=Klaas E.|last4=Friston|first4=Karl J.|last5=Dolan|first5=Raymond J.|date=2011-08|title=An In Vivo Assay of Synaptic Function Mediating Human Cognition|url=http://dx.doi.org/10.1016/j.cub.2011.06.053|journal=Current Biology|volume=21|issue=15|pages=1320–1325|doi=10.1016/j.cub.2011.06.053|issn=0960-9822}}</ref><ref>{{Cite journal|last=Moran|first=Rosalyn J.|last2=Jung|first2=Fabienne|last3=Kumagai|first3=Tetsuya|last4=Endepols|first4=Heike|last5=Graf|first5=Rudolf|last6=Dolan|first6=Raymond J.|last7=Friston|first7=Karl J.|last8=Stephan|first8=Klaas E.|last9=Tittgemeyer|first9=Marc|date=2011-08-02|title=Dynamic Causal Models and Physiological Inference: A Validation Study Using Isoflurane Anaesthesia in Rodents|url=http://dx.doi.org/10.1371/journal.pone.0022790|journal=PLoS ONE|volume=6|issue=8|pages=e22790|doi=10.1371/journal.pone.0022790|issn=1932-6203}}</ref>.
== Limitations / drawbacks ==
DCM is a hypothesis-driven approach for investigating the interactions among pre-defined regions of interest. It is not ideally suited for exploratory analyses
The variational Bayesian methods used for model estimation
== Software implementations ==
DCM is implemented in the [[Statistical parametric mapping|Statistical Parametric Mapping]] software package,
== References ==
|