Content deleted Content added
No edit summary |
Peterzlondon (talk | contribs) mNo edit summary |
||
Line 4:
== Procedure ==
DCM is used to estimate the coupling among brain regions and the changes in coupling due to experimental changes (e.g., time or context). The basic idea is to construct reasonably realistic models of interacting brain regions. These models are then supplemented with a forward model of how the hidden states of each brain region (e.g., neuronal activity) give
Experiments using DCM typically involve the following stages <ref name=":0">{{Cite journal|last=Stephan|first=K.E.|last2=Penny|first2=W.D.|last3=Moran|first3=R.J.|last4=den Ouden|first4=H.E.M.|last5=Daunizeau|first5=J.|last6=Friston|first6=K.J.|date=2010-02|title=Ten simple rules for dynamic causal modeling|url=http://dx.doi.org/10.1016/j.neuroimage.2009.11.015|journal=NeuroImage|volume=49|issue=4|pages=3099–3109|doi=10.1016/j.neuroimage.2009.11.015|issn=1053-8119}}</ref>:
Line 29:
\end{align}</math>
The first line describes the change in neural activity <math>z</math> with respect to time (i.e.
Specifying a DCM requires selecting models <math>f</math> and <math>g</math> and setting appropriate [[Prior probability|priors]] on the parameters - e.g. selecting which connections should be switched on or off. The choice of which models to use depends on the hypotheses being tested and the type of data which is available. For example, with fMRI, <math>f</math> is a parsimonious dynamical system parameterised by effective connectivity and <math>g</math> is a detailed biophysical model of the [[Haemodynamic response|BOLD response]]. The rest of this section surveys the models which have been developed using the DCM framework.
Line 35:
==== Functional MRI ====
[[File:DCM for fMRI.svg|alt=DCM for fMRI neural circuit|thumb|The neural model in DCM for fMRI. z1 and z2 are the mean level of activity in each region. Parameters A are the effective connectivity, B is the modulation of connectivity by a specific experimental condition and C is the driving input. ]]
The neural model in DCM for fMRI uses a [[Taylor series|Taylor approximation]] to capture the gross causal influences between brain regions and their change due to experimental inputs (see picture). This is coupled with a detailed biophysical model of the generation of the BOLD response and the MRI signal
Support for resting state analysis was first introduced in Stochastic DCM<ref>{{Cite journal|date=2011-09-15|title=Generalised filtering and stochastic DCM for fMRI|url=https://www.sciencedirect.com/science/article/pii/S1053811911001406|journal=NeuroImage|language=en|volume=58|issue=2|pages=442–457|doi=10.1016/j.neuroimage.2011.01.085|issn=1053-8119}}</ref>, which estimates both neural fluctuations and connectivity parameters in the time ___domain using a procedure called [[Generalized filtering|Generalized Filtering]]. A faster and more accurate solution for resting state data was introduced which operates in the frequency ___domain, called DCM for Cross-Spectral Densities (CSD) <ref>{{Cite journal|last=Friston|first=Karl J.|last2=Kahan|first2=Joshua|last3=Biswal|first3=Bharat|last4=Razi|first4=Adeel|date=2014-07|title=A DCM for resting state fMRI|url=http://dx.doi.org/10.1016/j.neuroimage.2013.12.009|journal=NeuroImage|volume=94|pages=396–407|doi=10.1016/j.neuroimage.2013.12.009|issn=1053-8119}}</ref><ref>{{Cite journal|last=Razi|first=Adeel|last2=Kahan|first2=Joshua|last3=Rees|first3=Geraint|last4=Friston|first4=Karl J.|date=2015-02|title=Construct validation of a DCM for resting state fMRI|url=https://doi.org/10.1016/j.neuroimage.2014.11.027|journal=NeuroImage|volume=106|pages=1–14|doi=10.1016/j.neuroimage.2014.11.027|issn=1053-8119|pmc=PMC4295921|pmid=25463471}}</ref>. Both of these can be applied to large-scale brain networks by using priors based on functional connectivity<ref>{{Cite journal|last=Seghier|first=Mohamed L.|last2=Friston|first2=Karl J.|date=2013-03|title=Network discovery with large DCMs|url=https://doi.org/10.1016/j.neuroimage.2012.12.005|journal=NeuroImage|volume=68|pages=181–191|doi=10.1016/j.neuroimage.2012.12.005|issn=1053-8119|pmc=PMC3566585|pmid=23246991}}</ref><ref name=":4">{{Cite journal|last=Razi|first=Adeel|last2=Seghier|first2=Mohamed L.|last3=Zhou|first3=Yuan|last4=McColgan|first4=Peter|last5=Zeidman|first5=Peter|last6=Park|first6=Hae-Jeong|last7=Sporns|first7=Olaf|last8=Rees|first8=Geraint|last9=Friston|first9=Karl J.|date=2017-10|title=Large-scale DCMs for resting-state fMRI|url=https://doi.org/10.1162/NETN_a_00015|journal=Network Neuroscience|language=en|volume=1|issue=3|pages=222–241|doi=10.1162/netn_a_00015|issn=2472-1751|pmc=PMC5796644|pmid=29400357}}</ref>. Another recent development for resting state analysis is Regression DCM<ref>{{Cite journal|last=Frässle|first=Stefan|last2=Lomakina|first2=Ekaterina I.|last3=Razi|first3=Adeel|last4=Friston|first4=Karl J.|last5=Buhmann|first5=Joachim M.|last6=Stephan|first6=Klaas E.|date=2017-07|title=Regression DCM for fMRI|url=https://doi.org/10.1016/j.neuroimage.2017.02.090|journal=NeuroImage|volume=155|pages=406–421|doi=10.1016/j.neuroimage.2017.02.090|issn=1053-8119}}</ref> implemented in the Tapas software collection (see [[#Software implementations|Software implementations]]). Regression DCM operates in the frequency ___domain, but linearizes the model under certain simplifications, such as having a fixed (canonical) haemodynamic response function. The enables rapid estimation as a [[General linear model|General Linear Model]], enabling application to large-scale brain networks.
Line 42:
==== EEG / MEG / LFP ====
DCM for EEG and MEG data use more biologically detailed neural models than fMRI, as the higher temporal resolution of these
* Physiological models:
|