Content deleted Content added
No edit summary |
→See also: and citation added |
||
Line 90:
==An equivalent but distinct expression==
A compact determinant of an {{mvar|m}}×{{mvar|m}}-matrix solution for the above Jacobi's formula may alternatively determine the coefficients {{mvar|c}},<ref>Brown, Lowell S. (1994). ''Quantum Field Theory'', Cambridge University Press. {{ISBN|978-0-521-46946-3}}, p. 54; Also see, Curtright, T. L. and Fairlie, D. B. (2012). "A Galileon Primer", arXiv:1212.6972 , section 3.</ref><ref>{{Cite book|title=Methods of Modern Mathematical Physics|last=Reed|first=M.|last2=Simon|first2=B.|publisher=ACADEMIC PRESS, INC.|year=1978|isbn=0-12-585004-2|volume=Vol. 4 Analysis of Operators|___location=USA|pages=323-333, 340, 343}}</ref>
:<math>c_{n-m} = \frac{(-1)^m}{m!}
\begin{vmatrix} \operatorname{tr}A & m-1 &0&\cdots\\
Line 98 ⟶ 99:
\operatorname{tr}A^m &\operatorname{tr}A^{m-1}& \cdots & \cdots & \operatorname{tr}A \end{vmatrix} ~.</math>
== See also ==
* [[Exterior algebra#Leverrier's%20algorithm|Exterior algebra § Leverrier's algorithm]]
* [[Jacobi's formula]]
* [[Fredholm determinant]]
==References==
{{reflist}}
|