Content deleted Content added
m v2.04b - Bot T20 CW#61 - WP:WCW project (Reference before punctuation) |
added mentions and references to irace |
||
Line 120:
=== Early Stopping-based ===
A class of early stopping-based hyperparameter optimization algorithms is purpose built for large search spaces of continuous and discrete hyperparameters, particularly when the computational cost to evaluate the performance of a set of hyperparameters is high. Irace implements the iterated racing algorithm, that focuses the search around the most promising configurations, using statistical tests to discard the ones that perform poorly.<ref name="irace">{{cite journal |last1=López-Ibáñez |first1=Manuel |last2=Dubois-Lacoste |first2=Jérémie |last3=Pérez Cáceres |first3=Leslie |last4=Stützle |first4=Thomas |last5=Birattari |first5=Mauro |date=2016 |title=The
Another early stopping hyperparameter optimization algorithm is Successive Halving (SHA),<ref>{{cite arxiv|last=Jamieson|first=Kevin|last2=Talwalkar|first2=Ameet|date=2015-02-27|title=Non-stochastic Best Arm Identification and Hyperparameter Optimization|eprint=1502.07943|class=cs.LG}}</ref> which begins as a random search but periodically prunes low-performing models, thereby focusing computational resources on more promising models. Asynchronous Successive Halving (ASHA)<ref>{{cite arxiv|last=Li|first=Liam|last2=Jamieson|first2=Kevin|last3=Rostamizadeh|first3=Afshin|last4=Gonina|first4=Ekaterina|last5=Hardt|first5=Moritz|last6=Recht|first6=Benjamin|last7=Talwalkar|first7=Ameet|date=2020-03-16|title=A System for Massively Parallel Hyperparameter Tuning|eprint=1810.05934v5}}</ref> further improves upon SHA’s resource utilization profile by removing the need to synchronously evaluate and prune low-performing models. Hyperband<ref>{{cite arxiv|last=Li|first=Lisha|last2=Jamieson|first2=Kevin|last3=DeSalvo|first3=Giulia|last4=Rostamizadeh|first4=Afshin|last5=Talwalkar|first5=Ameet|date=2020-03-16|title=Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization|eprint=1603.06560v4}}</ref> is a higher level early stopping-based algorithm that invokes SHA or ASHA multiple times with varying levels of pruning aggressiveness, in order to be more widely applicable and with fewer required inputs. === Others ===
Line 168 ⟶ 169:
===Early Stopping===
*[https://github.com/determined-ai/determined Determined] is a DL Training Platform that supports Hyperband for PyTorch and TensorFlow (Keras and Estimator) models.
* [https://iridia.ulb.ac.be/irace/ irace] is an R package that implements the iterated racing algorithm.<ref name="irace">{{cite journal |last1=López-Ibáñez |first1=Manuel |last2=Dubois-Lacoste |first2=Jérémie |last3=Pérez Cáceres |first3=Leslie |last4=Stützle |first4=Thomas |last5=Birattari |first5=Mauro |date=2016 |title=The irace package: Iterated Racing for Automatic Algorithm Configuration |journal=Operations Research Perspective |issue=3 |pages=43-58 |doi=10.1016/j.orp.2016.09.002}}</ref><ref name="race">{{cite journal |last1=Birattari |first1=Mauro |last2=Stützle |first2=Thomas |last3=Paquete |first3=Luis |last4=Varrentrapp |first4=Klaus |date=2002 |title=A Racing Algorithm for Configuring Metaheuristics |journal=GECCO 2002 |pages=11-18}}</ref>
*[https://github.com/kubeflow/katib Katib] is a Kubernetes-native system that includes hyperband.
|