Code-division multiple access (CDMA) is a channel access method used by various radio communication technologies.[1]
CDMA is an example of multiple access, where several transmitters can send information simultaneously over a single communication channel. This allows several users to share a band of frequencies (see bandwidth). To permit this without undue interference between the users, CDMA employs spread spectrum technology and a special coding scheme (where each transmitter is assigned a code).[1]
CDMA is used as the access method in many mobile phone standards. IS-95, also called "cdmaOne", and its 3G evolution CDMA2000, are often simply referred to as "CDMA"', but UMTS, the 3G standard used by GSM carriers, also uses "wideband CDMA", or W-CDMA, as well as TD-CDMA and TD-SCDMA, as its radio technologies.
History
The technology of code-division multiple access channels has long been known. In the Soviet Union (USSR), the first work devoted to this subject was published in 1935 by Dmitry Ageev.[2] It was shown that through the use of linear methods, there are three types of signal separation: frequency, time and compensatory. The technology of CDMA was used in 1957, when the young military radio engineer Leonid Kupriyanovich in Moscow made an experimental model of a wearable automatic mobile phone, called LK-1 by him, with a base station. LK-1 has a weight of 3 kg, 20–30 km operating distance, and 20–30 hours of battery life.[3][4] The base station, as described by the author, could serve several customers. In 1958, Kupriyanovich made the new experimental "pocket" model of mobile phone. This phone weighed 0.5 kg. To serve more customers, Kupriyanovich proposed the device, named by him as correllator.[5][6] In 1958, the USSR also started the development of the "Altai" national civil mobile phone service for cars, based on the Soviet MRT-1327 standard. The phone system weighed 11 kg (24 lb). It was placed in the trunk of the vehicles of high-ranking officials and used a standard handset in the passenger compartment. The main developers of the Altai system were VNIIS (Voronezh Science Research Institute of Communications) and GSPI (State Specialized Project Institute). In 1963 this service started in Moscow, and in 1970 Altai service was used in 30 USSR cities.[7]
Uses
- One of the early applications for code-division multiplexing is in the Global Positioning System (GPS). This predates and is distinct from its use in mobile phones.
- The Qualcomm standard IS-95, marketed as cdmaOne.
- The Qualcomm standard IS-2000, known as CDMA2000, is used by several mobile phone companies, including the Globalstar network.
- The UMTS 3G mobile phone standard, which uses W-CDMA.
- CDMA has been used in the OmniTRACS satellite system for transportation logistics.
==Steps in CDMA modulation=\)>÷!@!'@!'
CDMA is a spread-spectrum multiple-accessCite error: A <ref>
tag is missing the closing </ref>
(see the help page).
CDMA can also effectively reject narrow-band interference. Since narrow-band interference affects only a small portion of the spread-spectrum signal, it can easily be removed through notch filtering without much loss of information. Convolution encoding and interleaving can be used to assist in recovering this lost data. CDMA signals are also resistant to multipath fading. Since the spread-spectrum signal occupies a large bandwidth, only a small portion of this will undergo fading due to multipath at any given time. Like the narrow-band interference, this will result in only a small loss of data and can be overcome.
Another reason CDMA is resistant to multipath interference is because the delayed versions of the transmitted pseudo-random codes will have poor correlation with the original pseudo-random code, and will thus appear as another user, which is ignored at the receiver. In other words, as long as the multipath channel induces at least one chip of delay, the multipath signals will arrive at the receiver such that they are shifted in time by at least one chip from the intended signal. The correlation properties of the pseudo-random codes are such that this slight delay causes the multipath to appear uncorrelated with the intended signal, and it is thus ignored.
Some CDMA devices use a rake receiver, which exploits multipath delay components to improve the performance of the system. A rake receiver combines the information from several correlators, each one tuned to a different path delay, producing a stronger version of the signal than a simple receiver with a single correlation tuned to the path delay of the strongest signal.[8]
Frequency reuse is the ability to reuse the same radio channel frequency at other cell sites within a cellular system. In the FDMA and TDMA systems frequency planning is an important consideration. The frequencies used in different cells must be planned carefully to ensure signals from different cells do not interfere with each other. In a CDMA system, the same frequency can be used in every cell, because channelization is done using the pseudo-random codes. Reusing the same frequency in every cell eliminates the need for frequency planning in a CDMA system; however, planning of the different pseudo-random sequences must be done to ensure that the received signal from one cell does not correlate with the signal from a nearby cell.[9]
Since adjacent cells use the same frequencies, CDMA systems have the ability to perform soft hand-offs. Soft hand-offs allow the mobile telephone to communicate simultaneously with two or more cells. The best signal quality is selected until the hand-off is complete. This is different from hard hand-offs utilized in other cellular systems. In a hard-hand-off situation, as the mobile telephone approaches a hand-off, signal strength may vary abruptly. In contrast, CDMA systems use the soft hand-off, which is undetectable and provides a more reliable and higher-quality signal.[9]
Collaborative CDMA
In a recent study, a novel collaborative multi-user transmission and detection scheme called collaborative CDMA[10] has been investigated for the uplink that exploits the differences between users' fading channel signatures to increase the user capacity well beyond the spreading length in MAI-limited environment. The authors show that it is possible to achieve this increase at a low complexity and high bit error rate performance in flat fading channels, which is a major research challenge for overloaded CDMA systems. In this approach, instead of using one sequence per user as in conventional CDMA, the authors group a small number of users to share the same spreading sequence and enable group spreading and despreading operations. The new collaborative multi-user receiver consists of two stages: group multi-user detection (MUD) stage to suppress the MAI between the groups and a low-complexity maximum-likelihood detection stage to recover jointly the co-spread users' data using minimal Euclidean-distance measure and users' channel-gain coefficients.
See also
- cdmaOne
- CDMA2000
- W-CDMA
- Orthogonal variable spreading factor (OVSF), an implementation of CDMA
- Pseudo-random noise
- Spread spectrum
- CDMA Spectral Efficiency
- Comparison of mobile phone standards
Further reading
- Viterbi, Andrew J. (1995). CDMA: Principles of Spread Spectrum Communication (1st ed.). Prentice Hall PTR. ISBN 0-201-63374-4.
- "CDMA Spectrum". Retrieved 2008-04-29.
References
- ^ a b Guowang Miao; Jens Zander; Ki Won Sung; Ben Slimane (2016). Fundamentals of Mobile Data Networks. Cambridge University Press. ISBN 1107143217.
- ^ Ageev, D. V. (1935). "Bases of the Theory of Linear Selection. Code Demultiplexing". Proceedings of the Leningrad Experimental Institute of Communication: 3–35.
- ^ Nauka i Zhizn 8, 1957, p. 49.
- ^ Yuniy technik 7, 1957, p. 43–44.
- ^ Nauka i Zhizn 10, 1958, p. 66.
- ^ Tekhnika Molodezhi 2, 1959, p. 18–19.
- ^ "First Russian Mobile Phone". September 18, 2006.
- ^ Rapporteur, Theodore S. (2002). Wireless Communications, Principles and Practice. Prentice-Hall, Inc.
- ^ a b
Harte, Levine, Kikta, Lawrence, Richard, Romans (2002). 3G Wireless Demystified. McGowan-Hill.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ^ Shakya, Indu L. (2011). "High User Capacity Collaborative CDMA". IET Communications.