In logic, a predicate is a symbol that represents a property or a relation, though, formally, does not need to represent anything at all. For instance, in the first-order formula , the symbol is a predicate that applies to the individual constant which evaluates to either true or false. Similarly, in the formula , the symbol is a predicate that applies to the individual constants and . Predicates are considered a primitive notion of first-order, and higher-order logic and are therefore not defined in terms of other more basic concepts.

The term derives from the grammatical term "predicate", meaning a word or phrase that represents a propery or relation.

In the semantics of logic, predicates are interpreted as relations. For instance, in a standard semantics for first-order logic, the formula would be true on an interpretation if the entities denoted by and stand in the relation denoted by . Since predicates are non-logical symbols, they can denote different relations depending on the interpretation given to them. While first-order logic only includes predicates that apply to individual objects, other logics may allow predicates that apply to collections of objects defined by other predicates.

Strictly speaking, a predicate does not need to be given any interpretation, so long as its syntactic properties are well-defined. For example, equality may be understood solely through its reflexive and substitution properties (cf. Equality (mathematics) § Axioms). Other properties can be derived fom these, and they are sufficent for proving theorems in mathematics. Similarly, set membership can be understood solely through the axioms of Zermelo–Fraenkel set theory.

Predicates in different systems

edit

A predicate is a statement or mathematical assertion that contains variables, sometimes referred to as predicate variables, and may be true or false depending on those variables’ value or values.

See also

edit

References

edit
  1. ^ Lavrov, Igor Andreevich; Maksimova, Larisa (2003). Problems in Set Theory, Mathematical Logic, and the Theory of Algorithms. New York: Springer. p. 52. ISBN 0306477122.
edit