Data integration: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m query messo in corsivo |
m Data integration in corsivo |
||
Riga 3:
{{cite conference | author=Maurizio Lenzerini | title=Data Integration: A Theoretical Perspective | booktitle=PODS 2002 | year=2002 | pages=233–246 | url=http://www.dis.uniroma1.it/~lenzerin/homepagine/talks/TutorialPODS02.pdf}}</ref>
Questo processo si rivela importante in molteplici situazioni, nell'ambito sia commerciale (si pensi a due imprese che debbano unire i loro [[Base di dati|database]]) sia scientifico (per esempio, combinare risultati da diversi archivi [[Bioinformatica|bioinformatici]]).
La ''data integration'' compare con sempre maggior frequenza, allo stesso modo in cui sta esplodendo il volume e la necessità di condividere i dati esistenti.<ref name="DataExplode">{{cite news | author=Frederick Lane | title=IDC: World Created 161 Billion Gigs of Data in 2006 | year=2006 | url=http://www.toptechnews.com/story.xhtml?story_id=01300000E3D0&full_skip=1 IDC: World Created 161 Billion Gigs of Data in 2006}}</ref>
Questa materia è diventata il centro di un ampio lavoro tecnico, e numerosi problemi aperti restano irrisolti.
Riga 16:
Questo problema sorge frequentemente quando si integrano diversi servizi di interrogazione commerciale quali viaggi o applicazioni web con pubblicità classificata.
A partire dal 2009 l'andamento nella ''data integration'' ha l'accoppiamento tra dati fornendo un'interfaccia unificata per l'accesso ai dati in tempo reale attraverso uno schema intermedio, che consente alle informazioni di essere recuperate direttamente dalle basi di dati originali. Ciò è coerente con l'approccio [[SOA]], popolare in quel momento.
Questo approccio si basa sulla mappatura tra lo schema intermedio e gli schemi delle fonti originali, trasformando una ''query'' in ''query'' specializzate sugli schemi specifici delle sorgenti originali. Tali mappature possono essere definite in due modi: con una mappatura dalle entità dello schema intermedio alle entità delle fonti originali (approccio "Global As View" (GAV)), o una mappatura dalle entità dei sorgenti originali alle entità dello schema intermedio (approccio "Local As View" (LAV)). Il secondo approccio richiede inferenze più sofisticate per risolvere interrogazioni sullo schema intermedio, ma rende più facile aggiungere nuove fonti di dati a uno (stabile) schema intermedio.
Riga 51:
===Definizioni===
I sistemi di ''data integration'' sono formalmente definiti da una [[tripla]] <math>\left \langle G,S,M\right \rangle</math> dove <math>G</math> è lo schema globale, <math>S</math> è l'insieme eterogeneo degli schemi sorgente, e <math>M</math> è la mappatura che associa ''query'' tra la sorgente e gli schemi globali. Entrambi <math>G</math> e <math>S</math> sono espresse in [[Linguaggio formale|linguaggio]] su alfabeti composti da simboli per ognuna delle rispettive [[Database relazionale|relazioni]]. La [[Predicato funzionale|mappatura]] <math>M</math> consiste di asserzioni tra ''query'' su <math>G</math> e ''query'' su <math>S</math>. Quando gli utenti pongono un'interrogazione sul sistema di ''data integration'', essi pongono interrogazioni su <math>G</math> e la mappatura sostiene le connessioni tra gli elementi nello schema globale e negli schemi sorgenti.
Un database su uno schema è definito come un insieme di insiemi, uno per ogni relazione (in un database relazionale). Il database corrispondente allo schema di origine <math>S</math> dovrebbe comprendere l'insieme di insiemi di tuple per ogni sorgente eterogenea ed è chiamato ''database sorgente''. Si noti che questo singolo database di origine potrebbe in realtà rappresentare una collezione di database disconnessi. Il database corrispondente allo schema virtuale intermedio <math>G</math> è chiamato ''database globale''. Il database locale deve soddisfare la mappatura <math>M</math> rispetto al database sorgente. La legittimità di questa mappatura dipende dalla natura della corrispondenza tra <math>G</math> e <math>S</math>. Esistono due modelli popolari per modellare questa corrispondenza: ''Vista Globale'' o GAV e ''Vista Locale'' o LAV.
I sistemi GAV modellano il database globale come insieme di [[Vista (basi di dati)|viste]] su <math>S</math>. In questo caso <math>M</math> associa a ogni elemento di <math>G</math> una interrogazione su <math>S</math>. L'[[Ottimizzazione di query|elaborazione delle ''query'']] diventa un'operazione semplice grazie alle associazioni ben definite tra <math>G</math> e <math>S</math>. L'onere della complessità cade sull'implementazione del codice del mediatore in modo che istruisca il sistema di ''data integration'' nell'esatta maniera per recuperare elementi dai database sorgenti. Se si aggiungono altre fonti al sistema, può essere richiesto un grande impegno per aggiornare il mediatore, perciò l'approccio GAV sembra preferibile quando le sorgenti hanno una bassa probabilità di cambiare.
Nell'approccio GAV al sistema di ''data integration'' nell'esempio, il progettista dovrebbe prima sviluppare mediatori per ciascuna sorgente di informazioni cittadino e poi progettare lo schema globale attorno a questi mediatori. Per esempio, pensiamo se una delle fonti servisse un sito web meteorologico. Il progettista probabilmente aggiungerebbe allo schema globale un elemento corrispondente al meteo. Poi il grosso degli sforzi si concentra sulla scrittura dell'opportuno codice mediatore che trasformi predicati sul meteo in interrogazioni il sito meteorologico. Questo sforzo può diventare complesso se anche qualche altra sorgente ha affinità col meteo, perché il progettista potrebbe avere necessità di scrivere il codice per combinare correttamente i risultati dalle due fonti.
In LAV, invece, il database sorgente è modellato come un insieme di viste <math>G</math>. In questo caso <math>M</math> associa ad ogni elemento di <math>S</math> una interrogazione su <math>G</math>. Qui le esatte associazioni tra <math>G</math> e <math>S</math> non sono più ben definite. Come illustrato nella prossima sezione, l'onere di scegliere come recuperare gli elementi dalle sorgenti ricade sull'elaboratore di ''query''. Il beneficio della modellazione LAV è che nuove sorgenti possono essere aggiunte con molto meno dispendio di energie rispetto ad un sistema GAV, perciò l'approccio LAV dovrebbe essere preferito nei casi in cui lo schema intermedio sia meno stabile o più facilmente mutevole.
In un approccio LAV al sistema di ''data integration'' dell'esempio precedente, il progettista del sistema progetta lo schema globale e poi semplicemente inserisce gli schemi delle rispettive sorgenti di informazione delle città.
Consideriamo ancora che una delle fonti serva un sito web meteorologico: il progettista dovrebbe aggiungere allo schema globale elementi corrispondenti al meteo solo se non esistessero già. Poi i programmatori scriverebbero un [[Adapter pattern|adapter]] o un [[Wrapper|wrapper]] per il sito e aggiungerebbero una descrizione dello schema dei risultati del sito agli schemi sorgenti. La complessità di aggiungere nuove sorgenti si sposta dal progettista all'elaboratore di ''query''.
===Elaborazione di ''query''===
La teoria dell'elaborazione di ''query'' in un sistema di ''data integration'' systems è comunemente espressa utilizzando interrogazioni congiuntive [[Linguaggio di interrogazione|interrogazioni]] e [[Datalog]], un linguaggio di [[programmazione logica]] puramente dichiarativo.<ref name="reffive">{{cite conference | author=[[Jeffrey D. Ullman]] | title=Information Integration Using Logical Views | booktitle=ICDT 1997 | year=1997 | pages=19–40 | url=http://www-db.stanford.edu/pub/papers/integration-using-views.ps}}</ref> Si può liberamente pensare ad una query come una funzione logica applicata alle relazioni del database come "<math>f(A,B)</math> dove <math>A < B</math>". Se una tupla o insieme di tuple è sostituito nella regole e la soddisfa (cioè la rende vera), allora consideriamo quella tupla parte dell'insieme di risposte alla ''query''. Mentre il linguaggi formali in stile [[Datalog]] esprimono queste ''query'' sinteticamente e senza ambiguità, anche le ''query'' [[SQL]] comuni contano come ''query'' congiuntive.
In termini di integrazione dei dati, il "contenimento delle ''query''" rappresenta un'importante proprietà delle ''query'' congiuntive. Una ''query'' <math>A</math> contiene un'altra ''query'' <math>B</math> (in simboli <math>A \supset B</math>) se i risultati di <math>B</math> sono un sottoinsieme dei risultati di <math>A</math> per ogni database. Le due ''query'' sono dette equivalenti se gli insiemi risultanti sono uguali per ogni database. Questo è importante perché in entrambi i sistemi GAV e LAV, un utente pone ''query'' congiuntive su uno schema virtuale rappresentato da un insieme di [[Vista (basi di dati)|viste]], o ''query'' congiuntive [[Vista materializzata |materializzate]]. L'integrazione si propone di riscrivere le ''query'' rappresentate dalle viste al fine di rendere i loro risultati equivalenti o al massimo contenuti nella richiesta del nostro utente. Ciò corrisponde al problema di rispondere a interrogazioni usando le viste.<ref name="refsix">{{cite conference | author=[[Alon Y. Halevy]] | title=Answering queries using views: A survey | booktitle=The VLDB Journal | year=2001 | pages=270–294 | url=http://www.cs.uwaterloo.ca/~david/cs740/answering-queries-using-views.pdf}}</ref>
Riga 70:
Nei sistemi GAV, un progettista scrive il codice del mediatore per definire la riscrittura delle ''query''. Ogni elemento nella ''query'' dell'utente corrisponde a una regola di sostituzione proprio come ogni elemento nello schema globale corrisponde a una ''query'' sulla sorgente. L'elaborazione delle ''query'' espande semplicemente i sotto-obiettivi della ''query'' dell'utente secondo le regole specificate nel mediatore, perciò la ''query'' risultante è probabile che sia equivalente. Mentre il progettista fa la maggior parte del lavoro in anticipo, alcuni sistemi GAV come [http://www-db.stanford.edu/tsimmis/ Tsimmis] comportano la semplificazione del processo di descrizione del mediatore.
Nei sistemi LAV, le ''query'' vengono sottoposte a un processo più radicale di riscrittura perché non esiste alcun mediatore che allinei le ''query'' dell'utente con una semplice strategia di espansione. Il sistema di integrazione deve eseguire una ricerca sullo spazio delle possibili ''query'' al fine di trovare la riscrittura migliore. La riscrittura risultante potrebbe non essere una ''query'' equivalente, ma massimamente contenuta, e le tuple restituite incomplete. Dal 2009 l'algoritmo MiniCon <ref name="refsix" /> è l'algoritmo capofila nella riscrittura di ''query'' per i sistemi di ''data integration'' LAV.
In generale, la complessità di riscrittura delle ''query'' è [[NP-completo]].<ref name="refsix" /> Se lo spazio delle riscritture è relativamente piccolo questo non rappresenta un problema — anche per sistemi di integrazione con centinaia di sorgenti.
==Strumenti per
* Alteryx
* Analytics Canvas
Riga 95:
* [http://www.dataladder.com Data Ladder]
==''Data integration'' nella vita scientifica==
Interrogativi scientifici su larga scala, come il riscaldamento globale, la diffusione di specie infestanti e l'esaurimento delle risorse richiedono sempre più la raccolta di dati eterogenei per la meta-analisi. Questo tipo di integrazione è particolarmente impegnativa per i dati ambientali ed ecologici, perché gli standard sui metadati non concordati e ci sono molti tipi diversi di dati prodotti in questi campi. Le iniziative della [[National Science Foundation]] come Datanet hanno lo scopo di facilitare agli scienziati l'integrazione dei dati, fornendo infrastrutture informatiche e impostazioni standard.
Le cinque iniziative Datanet finanziate sono:
|