Teoria delle code: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
ortografia
Riga 32:
I Sistemi a Coda sono modellizzabili tramite [[processo markoviano|catene di Markov]] tempo continue ovvero con [[sistema dinamico|sistemi dinamici]] caratterizzati da N Stati, Probabilità di Stato pari a P(Ni) e Probabilità di Transizione da uno stato ad un altro pari al prodotto tra la Frequenza di Transizione f e l'intervallo di tempo dt, dipendente solo dallo stato presente del sistema e non da quelli precedenti (sistema senza memoria). Lo stato rappresenta la situazione in cui si trova il sistema rispetto a variabili prese come riferimento (in linea di massima non univoche) e l'evoluzione del sistema è mappata con una sequenza di salti fra gli stati stessi. Note le frequenze di transizione, ovvero la probabilità di transizione di stato, è possibile derivare le probabilità di stato P(Si) risolvendo la catena di Markov; dalla conoscenza di queste probabilità si possono poi derivare i parametri prestazionali di interesse quali il traffico smaltito, la probabilità di rifiuto, il tempo di coda, ecc…
 
Definendo il flusso proveniente dallo stato i-esimo verso lo stato k-esimo come il prodotto P(Sk)*qk, i tra la probabilità di stato in k e la frequenza di transizione verso lo stato k, per il calcolo della probabilità di stato si utilizza la condizione espressa dalla legge di conservazione dei flussi la quale afferma che la somma dei flussi entranti è uguale alla somma dei flussi uscenti da uno stato.
Applicando tale principio ad ogni stato si ottiene un sistema di S equazioni in S incognite (le probabilità di stato) tante quante gli stati S; le equazioni non sono tutte indipendenti tra loro, quindi la soluzione del sistema è impossibile (determinante nullo) a meno di sostituire un'equazione con la somma delle probabilità degli stati pari ad uno.