Utente:Andrea And/Sandbox/3: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica |
|||
(4 versioni intermedie di un altro utente non mostrate) | |||
Riga 7:
|align="center"|
| <math> I = m r^2</math>
| Un massa puntiforme non ha momento di inerzia intorno al proprio asse, ma usando il [[Teorema di Huygens-Steiner|teorema degli assi paralleli]]
|-
| Due masse puntiformi, ''M'' e ''m'', con [[massa ridotta]] ''<math> \mu </math>'' e separate da una distanza, ''x''.
Riga 16:
| Asta di lunghezza ''L'' e massa ''m'' <br>(asse di rotazione alla fine dell'asta)
| align="center"|[[Image:moment of inertia rod end.png]]
| <math>I_{\mathrm{
| Questa espressione assume che l'asta sia un filo infinitamente sottile ma rigido. Questo è anche un caso particolare della piastra rettangolare con asse di rotazione alla fine della piastra, e con ''h'' = ''L'' e ''w'' = ''0''.
|-
| Asta di lunghezza ''L'' e massa ''m''
| align="center"|[[Image:moment of inertia rod center.png]]
| <math>I_{\mathrm{
| Questa espressione assume che l'asta sia un filo infinitamente sottile ma rigido.Questo è anche un caso particolare della piastra rettangolare con asse di rotazione al centro della piastra, con ''w'' = ''L'' e ''h'' = ''0''.
|-
Riga 44:
|anno=1986
}}</ref>
| Questa espressione vale per un cilindro vuoto (come per esempio un tubo), con spessore delle pareti trascurabile (appunto approssimabile a una superficie cilindrica). E' un caso particolare del tubo cilindrico con pareti spesse ed estremità aperte e ''r''<sub>1</sub>=''r''<sub>2</sub>.
Anche una massa puntiforme (''m'') alla fine di un'asta di lunghezza ''r'' ha lo stesso momento di inerzia, e il valore ''r'' è chiamato [[raggio di inerzia]].
|-
Riga 54:
| Tubo cilindrico con pareti spesse ed estremità aperte, di raggio interno ''r''<sub>1</sub>, raggio esterno ''r''<sub>2</sub>, lunghezza ''h'' e massa ''m''
|align="center"| [[Image:moment of inertia thick cylinder h.png]]
| <!-- Please read the discussion on the talk pagina e the citad source before changing the sign to a minus. --><math>I_z = \frac{1}{2} m\left({r_1}^2 + {r_2}^2\right)</math> <ref name="serway"/><ref>{{cita web| url=http://www.livephysics.com/problems-e-answers/classical-mechanics/find-moment-of-inertia-of-a-uniform-hollow-cylinder.html|titolo= Classical Mechanics - Moment of inertia of a uniform hollow cylinder|editore= LivePhysics.com|accesso=31 gennaio 2008|lingua=en}}</ref><br><math>I_x = I_y = \frac{1}{12} m\left[3\left({r_2}^2 + {r_1}^2\right)+h^2\right]</math><br>o definendo lo spessore normalizzato ''t<sub>n</sub>'' = ''t''/''r'' e
| con densità ''ρ'' e la stessa geometria <math>I_z = \frac{1}{2} \pi\rho h\left({r_2}^4 - {r_1}^4\right)</math> <math>I_x = I_y = \frac{1}{12} \pi\rho h\left(3({r_2}^4 - {r_1}^4)+h^2({r_2}^2 - {r_1}^2)\right)</math>
|-
Riga 80:
|—
|-
| [[Toro (geometria)|Toro]] con raggio
|align="center"| [[Image:torus cycles.png|122px]]
|
| url = http://scienceworld.wolfram.com/physics/MomentofInertiaRing.html
| titolo = Moment of Inertia — Ring
Riga 89:
| accesso = 2010-03-25
}}</ref><br/>
|—
|-
|