Gemini API in Vertex AI quickstart

This quickstart shows you how to install the Google Gen AI SDK for your language of choice and then make your first API request. It covers the following topics:

Authentication Method Description Use Case
API key A simple encrypted string that you can use to call the Gemini API in Vertex AI. Best for quick prototyping and development when you don't need to access Google Cloud resources.
Application Default Credentials (ADC) A strategy that finds credentials automatically based on the application environment, without needing to modify application code. Recommended for most production applications, especially those running on Google Cloud, as it provides more robust and secure authentication.

Choose your authentication method:


Before you begin

Concepts

  • API key: A simple encrypted string that identifies your project when calling the API, suitable for quick prototyping.
  • Application Default Credentials (ADC): A method that automatically finds and uses service account credentials in a Google Cloud environment, recommended for production applications.

Prerequisites

Configure application default credentials if you haven't yet.

The following diagram summarizes the overall workflow:

Install the SDK and set up your environment

On your local machine, click one of the following tabs to install the SDK for your programming language.

Gen AI SDK for Python

Install and update the Gen AI SDK for Python by running this command.

pip install --upgrade google-genai

Set environment variables:

  # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
  # with appropriate values for your project.
  export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
  export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

Gen AI SDK for Go

Install and update the Gen AI SDK for Go by running this command.

go get google.golang.org/genai

Set environment variables:

  # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
  # with appropriate values for your project.
  export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
  export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

Gen AI SDK for Node.js

Install and update the Gen AI SDK for Node.js by running this command.

npm install @google/genai

Set environment variables:

  # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
  # with appropriate values for your project.
  export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
  export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

Gen AI SDK for Java

To install the Gen AI SDK for Java, add the following dependency to your Maven pom.xml file:

<dependencies>
  <dependency>
    <groupId>com.google.genai</groupId>
    <artifactId>google-genai</artifactId>
    <version>0.7.0</version>
  </dependency>
</dependencies>
  

Set environment variables:

  # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
  # with appropriate values for your project.
  export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
  export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

REST

Set environment variables:

  GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
  GOOGLE_CLOUD_LOCATION=global
  API_ENDPOINT=YOUR_API_ENDPOINT
  MODEL_ID="gemini-2.5-flash"
  GENERATE_CONTENT_API="generateContent"
  

What's next

Now that you made your first API request, you might want to explore the following guides that show how to set up more advanced Vertex AI features for production code: