Microscopio e Urania (nave oceanografica): differenze tra le pagine

(Differenze fra le pagine)
Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica
Etichette: Modifica da mobile Modifica da web per mobile
 
Nuova pagina: {{S|navi}} {{Infobox nave |Nome=''Urania'' |Immagine=Urania en el Puerto de la Bahía de Cádiz.jpg |Dimensioni_immagine=Urania nel porto della Baia di Cadice (Spagna)...
 
Riga 1:
{{AvvisounicodeS|navi}}
{{Infobox nave
{{nota disambigua|l'omonima [[costellazione]]|[[Microscopio (costellazione)]]}}
|Nome=''Urania''
[[File:Microscope-letters.svg|thumb|Microscopio ottico composto monoculare del tipo più semplice, rappresentato schematicamente; percorso del fascio luminoso e elementi ottici strutturali in evidenza. La messa a fuoco, cioè la variazione della distanza preparato/obiettivo, si attua spostando il tubo ottico. Illuminazione esterna allo strumento.
|Immagine=Urania en el Puerto de la Bahía de Cádiz.jpg
|Dimensioni_immagine=Urania nel porto della Baia di Cadice (Spagna)
|Didascalia=
|Bandiera={{Insegna navale|ITA}}
|Tipo=Nave oceanografica
|Classe =100 A. 1.1. nav.s. st. I.L.
|Identificazione =275R.I.
|Porto di registrazione = Napoli
|Costruttori=
|Cantiere= Cantiere Mario Morini, Ancona
|Impostazione=30 novembre 1990
|Varo=1992
|Entrata_in_servizio=[[2001]]
|Ammodernamento = 2015
|Proprietario=SO.PRO.MAR. spa - Napoli
|Dislocamento=a pieno carico: 900 [[tonnellata|t]]
|Lunghezza= 61.20
|Larghezza= 11.10
|Altezza=
|Pescaggio=3,10 - 3,60
|Propulsione=due [[motore diesel|motori diesel]] da 1000 KW con due eliche a passo variabile e 1 elica prodiera da 220 KW
|Velocità=14.5
|Velocità_km=
|Autonomia=45 giorni
|Capacità_di_carico=
|Equipaggio=36
|Sistemi_difensivi=
|Corazzatura=
|Mezzi_aerei=
|Motto=
}}
La nave oceanografica '''Urania''' è stata una nave del [[Consiglio Nazionale delle Ricerche]] destinata alle analisi e alle ricerche geologiche, chimiche e radiologiche.<ref>{{cita web|titolo=La nave oceanografica Urania|sito=Consiglio nazionale delle ricerche|url=http://www.cnr.it/consulenza/NaveUrania.html}}</ref>
 
L'imbarcazione era inclusa fra le grandi infrastrutture del [[Consiglio nazionale delle ricerche]], insieme alla [[Laboratorio-Osservatorio Internazionale Piramide]] sul monte [[Everest]], il laboratorio aereo per ricerche ambientali (LARA)<ref>Il laboratorio aereo per ricerche ambientali (LARA) è installato a bordo dell'aereo [[CASA C-212 Aviocar|CASA C-212-200]] (Matricola I-MAFE) operato dalla Compagnia Generale Ripreseaeree spa</ref>, il [[Stazione meteorologica di Monte Cimone|laboratorio del Monte Cimone]], la [[Stazione Mario Zucchelli|Base Scientifica in Antartide]] e la [[Base artica Dirigibile Italia|Base scientifica del CNR in Artico]].<ref>{{cita web|titolo=Grandi strutture|url=http://www.cnr.it/istituti/ConsulenzeGrandInf.html}}</ref>
A - Oculare;
B - Obiettivo;
C - Preparato;
D - Condensatore;
E - Tavolino portaoggetti;
F - Specchio. ]]
 
==Storia==
Il '''microscopio''' (dal [[lingua greca|greco]]: ''{{polytonic|μικρόν}}'' ''mikrón'' "piccolo" e ''{{polytonic|σκοπεῖν}}'' ''skopéin'' "guardare") è uno strumento che consente di risolvere e ingrandire oggetti di piccole dimensioni per permetterne l'osservazione diretta, o indiretta tramite [[fotografia]] e sistemi elettronici. Può essere ottico, e quindi basato sull'osservazione nell'ambito dello [[spettro elettromagnetico]] della luce in senso lato, elettronico, basato sull'osservazione tramite fasci di [[elettrone|elettroni]], a scansione di sonda, basato sull'esplorazione della superficie del campione con una sonda materiale, o di altro tipo e cosa importante é che parevano inutili infatti Robert Hooke decise di eliminarli del tutto ma poi Pas partó li leva questa idea, tra l'altro é una notizia inedita questa!!!
Prima nave da ricerca multidisciplinare progettata in Italia, l'Urania è stata consegnata al CNR nell'aprile 1992. Considerata tra le migliori navi da ricerca oceanografica a disposizione della comunità scientifica internazionale,<ref>{{cita news|titolo=Mancano navi oceanografiche, a rischio lavoro dei geologi marini|pubblicazione=Corriere di Siena|data=2019-02-21|url=https://corrieredisiena.corr.it/video/tv-news/660655/mancano-navi-oceanografiche-a-rischio-lavoro-dei-geologi-marini.html}}</ref> la nave oceanografica Urania veniva impiegata mediamente per oltre 330 giornate operative all'anno.<ref>{{cita web|N/O Urania|sito0Sopromar|url=http://www.sopromar.it/it/urania.htm}}</ref> Nei primi 20 anni di attività sono state condotte oltre 300 le campagne oceanografiche.<ref>{{cita web|titolo=URANIA - 20 anni|sito=CNR web tv|url=http://www.cnrweb.tv/urania-20-anni/}}</ref>
 
[[File:Urania IMO 9013220 01 @chesi.JPG|miniatura|sinistra|Nave Urania nell'aprile 2015]]
I primi strumenti efficaci, nell'ambito dei microscopi di tipo ottico, vennero prodotti in Olanda alla fine del [[XVI secolo]], ma l'invenzione vera e propria è tuttora controversa. [[Galileo]] ne inviò uno di sua costruzione al principe Federico Cesi, fondatore dell'[[Accademia dei Lincei]], per mostrargliene il funzionamento. Galileo definiva lo strumento un "occhialino per vedere le cose minime". Tra i primi scienziati ad utilizzare, diffondere e migliorare l'uso di questo potente strumento, a partire dal [[XVII secolo]], si ricordano [[Antoni van Leeuwenhoek]], e [[Robert Hooke]].
Nell'aprile 2015, presso il [[porto di Livorno]] la nave è stata tagliata a metà in due tronconi per allungarne lo scafo, che è passato da 61 a 67 metri al fine di ospitare altri spazi di ricerca.<ref>{{cita news|titolo=“Urania”, adesso la nave è più lunga di sei metri|pubblicazione=Il Tirreno|data=2015-04-24|url=https://iltirreno.gelocal.it/livorno/cronaca/2015/04/24/news/urania-adesso-la-nave-e-piu-lunga-di-sei-metri-1.11297605}}</ref> Il 25 agosto dello stesso anno, mentre la nave Urania si trovava ancora nel bacino di galleggiamento "Mediterraneo" nel [[porto di Livorno]] per riparazioni, è avvenuto un incidente sul lavoro che causato la morte di un operaio e il ferimento dei restanti 11 membri dell'equipaggio.<ref>{{cita news|titolo=Tragedia in porto, la nave Urania affonda: un morto e dodici feriti, uno è grave|pubblicazione=Il tirreno|data=2015-08-25|url=https://iltirreno.gelocal.it/livorno/cronaca/2015/08/25/news/tragedia-in-porto-la-nave-urania-affonda-un-morto-e-dodici-feriti-uno-e-grave-1.11986411}}</ref> L'imbarcazione è rimasta sopposta a sequestro giudiziario fino al marzo 2017,<ref>{{cita news|titolo=Livorno, Bacino galleggiante in attesa dell'accertamento del tribunale|pubblicazione=Corriere Marittimo|data=2017-06-29|url=https://www.corrieremarittimo.it/ports/livorno-bacino-galleggiante-in-attesa-dellaccertamento-del-tribunale/}}</ref>, mentre nel luglio 2018 ne è stata annunciata la demolizione,<ref>{{cita news|titolo=Demolizione della nave Urania, per tre anni "prigioniera" del bacino di carenaggio di Livorno|pubblicazione=Corriere Marittimo|data=2018-07-07|url=https://www.corrieremarittimo.it/ports/demolizione-della-nave-urania-per-tre-anni-prigioniera-del-bacino-di-carenaggio-di-livorno/}}</ref> conclusasi nel successivo mese di settembre.
 
Nel febbraio 2019, in occasione del terzo congresso dei geologi marini ospitato presso la sede del CNR a Roma, è stato lanciato l'appello per l'acquisizione di una nuova nave oceanografica italiana.<ref>{{cita news|autore=Fabio Pozzo|titolo=Il Cnr chiede all’Italia una nuova nave oceanografica |pubblicazione=La Stampa|data=2019-02-25|url=https://www.lastampa.it/2019/02/25/societa/il-cnr-chiede-allitalia-una-nuova-nave-oceanografica-l0DJrKXXL281932hzXcLMM/pagina.html}}</ref><ref>{{cita news|titolo=Manca una nave oceanografica, si apre convegno dei geologi marini|sito=Askanews|data=2019-02-21|url=http://www.askanews.it/scienza-e-innovazione/2019/02/21/manca-una-nave-oceanografica-si-apre-convegno-dei-geologi-marini-pn_20190221_00207/}}</ref>
== Caratteristiche generali ==
=== Risoluzione laterale ===
 
==Note==
La risoluzione laterale di un microscopio è quella minima distanza tra due punti, che permette ancora di distinguerli. Se la distanza tra i due punti è minore, essi si confondono in uno solo.
<references/>
Nel caso, lo strumento, si basi sull'utilizzo di radiazione con una propria lunghezza d'onda associata, come i tradizionali microscopi ottici, risoluzione e lunghezza d'onda utilizzata sono parametri tra loro strettamente correlati. Microscopi che si basino su diverse tecnologie, come ad esempio l'AFM, ovviamente rispondono a considerazioni differenti.</br>
In prima approssimazione, e non tenendo conto di aberrazioni ottiche, possiamo considerare che la relazione che lega la risoluzione laterale (''d'' , ovvero distanza tra due punti tra loro risolti), l'[[apertura numerica]] di un sistema ottico (tutto il sistema) e la lunghezza d'onda della radiazione utilizzata sia:
: <math>d = 0,6098 \frac { \lambda } { A_N }</math>
Questa relazione è generalmente nota come ''principio di [[Ernst Abbe|Abbe]]''.
 
Per un microscopio ottico in luce visibile, ''d'' raggiunge i 0,2 [[Micrometro (unità di misura)|μm]]; il [[microscopio elettronico]] giunge a 0,1 [[Nanometro|nm]].
 
Il potere risolutivo è il reciproco della risoluzione laterale.
 
=== Ingrandimento ===
Si definisce tale il rapporto tra le dimensioni dell'oggetto originale e quelle dell'immagine ottenuta.
L'ingrandimento lineare o angolare (da non confondersi con quello [[area]]le o di superficie, alle volte utilizzato), in caso di microscopi composti è dato da:
::<math>\mathrm{MA}=M_o \times M_e</math>
dove <math>M_o</math> è l'ingrandimento dell'obiettivo, dipendente dalla sua [[lunghezza focale]] <math>f_o</math> e dalla distanza <math>d_i</math> tra il [[piano focale]] posteriore dell'obiettivo e il piano focale dell'oculare, ed <math>M_e</math> quello dell'oculare.
:<math>M_o={d_i \over f_o}</math>
<math>d_i</math> viene chiamato anche ''lunghezza ottica'' del tubo, fissa, e nei moderni strumenti ottici generalmente di 160&nbsp;mm. Da notare che gli obiettivi devono essere progettati per una data lunghezza ottica di utilizzo (riportata sull'obiettivo stesso). In passato era piuttosto diffusa la misura 170&nbsp;mm, mentre attualmente ha preso piede la progettazione di sistemi corretti all'infinito. Anche l'ingrandimento oculare dipende dalla sua lunghezza focale <math>f_e</math> e può essere calcolato dalle normali equazioni delle lenti di ingrandimento.
 
In pratica per calcolare l'ingrandimento al quale si osserva un campione si moltiplica quello proprio dell'obiettivo per quello dell'oculare. Tale ingrandimento è quello dell'immagine visibile, idealmente riportata sul piano in cui giace il campione stesso e cioè alla distanza tra quest'ultimo e l'occhio dell'osservatore. Diversa è la situazione se l'immagine viene raccolta su di uno schermo o una lastra fotografica: in questo caso è necessario tenere conto dell'altezza dello schermo (o pellicola) rispetto all'oculare e l'ingrandimento sarà quello risultante sul negativo. In questi casi conviene sempre usare un vetrino micrometrico, per avere un sicuro termine di paragone. Con i migliori obiettivi ed oculari e nelle ideali condizioni di illuminazione l'ingrandimento utile, senza perdita di risoluzione, del microscopio ottico può raggiungere i 1000 - 1500 diametri (1000 - 1500 X).
 
Aumentando il tiraggio del tubo o proiettando l'immagine su di uno schermo lontano si potrebbero raggiungere ingrandimenti molto maggiori ma il potere risolutivo che, come abbiamo visto sopra, è funzione della lunghezza d'onda della luce visibile, non ne sarebbe in alcun modo incrementato.
 
=== Aberrazioni ===
Le principali aberrazioni, difetti del sistema nel formare un'immagine nitida e risolta, che affliggono i microscopi, e le loro eventuali correzioni si possono riassumere in:
* [[Aberrazione sferica]]--> sistemi asferici
* [[Aberrazione cromatica]]--> sistemi [[Acromatico|acromatici]] --> sistemi [[Apocromatico|apocromatici]]
* [[Astigmatismo dei fasci obliqui]]--> sistemi anastigmatici
* [[Coma (ottica)|Coma]]--> sistemi asferici
* [[Curvatura di campo]]
* [[Distorsione ottica|distorsione]] ''a cuscino'' e ''barilotto'' --> sistemi asferici
A seconda della branca di microscopia considerata, tali difetti saranno più o meno rappresentati. Ad esempio utilizzando radiazione di una sola lunghezza d'onda, non avremo aberrazioni di tipo cromatico.
 
=== Costituenti ===
Il microscopio è formato da una parte meccanica, strutturale e una parte tradizionalmente chiamata ottica, funzionale.
 
==== Parte meccanica ====
La parte meccanica deve essere robusta e relativamente pesante per consentire la necessaria stabilità al sistema. Lo stativo rappresenta il corpo principale del microscopio ed ha la funzione di fare da supporto ai meccanismi di movimento e di messa a fuoco ed alla parte ottica.
 
La parte meccanica del microscopio alloggia anche il sistema di illuminazione, in caso di sistemi con illuminazione incorporata.
Il preparato da osservare si pone sul tavolino portaoggetti, dotato di un carrello traslatore per mezzo del quale il preparato può essere spostato agevolmente eventualmente con movimenti meccanici micrometrici nelle direzioni destra-sinistra e avanti-indietro.
Al di là del tavolino portaoggetti, verso l'illuminazione si trova un supporto meccanico che ospita il condensatore ed il diaframma di apertura. Ancora oltre, prima dell'illuminatore, si trova il diaframma di campo.
Il microscopio deve essere dotato di un sistema molto accurato di messa a fuoco sia del preparato che del sistema di illuminazione. Il tavolino portaoggetti viene spostato verticalmente rispetto all'obiettivo tramite i comandi di messa a fuoco macrometrici e micrometrici (o alternativamente si può spostare l'ottica rispetto al tavolino). Il condensatore focalizza correttamente l'illuminazione sul preparato, il collettore focalizza la sorgente luminosa in un particolare piano ottico del condensatore.
[[File:Obbiettivi per mo.jpg|thumb|Obbiettivi per Microscopio ottico: il primo a sinistra è un [[Koristka]] dei primi anni del [[Novecento]]. Gli altri sono moderni.]]
[[File:Oculari per microscopio ottico.jpg|thumb|Oculari [[Officine Galileo|Galileo]] e [[Leitz (azienda)|Leitz]] per Microscopio ottico]]
 
==== Parte funzionale ====
La parte funzionale, in genere chiamata ottica per gli strumenti basati sull'utilizzo della luce, è formata da tre o quattro sistemi di lenti e dalla sorgente, che, nei sistemi composti a radiazione trasmessa, partendo dalla base del microscopio, sono:
* la sorgente;
* il collettore della sorgente o condensatore di campo, col diaframma di campo;
* il condensatore con il diaframma di apertura;
* l'obiettivo;
* l'oculare.
 
L'eventuale parte di microscopio, nella quale vanno inseriti gli obiettivi multipli, che possono essere scelti in base all'ingrandimento voluto, si chiama revolver.
 
== Tipologie ==
 
I microscopi si dividono sommariamente, a seconda del sistema adoperato per indagare il campione, in '''microscopi ottici''', '''microscopi elettronici''', '''[[Microscopia a scansione di sonda|microscopi a scansione di sonda]]''', '''microscopi binoculari da dissezione''', '''microscopi di altro tipo''':
 
* Il microscopio ottico utilizza come sorgente la luce, intesa in senso generale come radiazione elettromagnetica dal vicino infrarosso all'ultravioletto, anche se i microscopi più diffusi utilizzano proprio la radiazione visibile, ha risoluzione tipicamente minore rispetto al microscopio elettronico, ma è generalmente economico e fornisce immagini a colori anche di organismi viventi. Con il microscopio ottico si possono ad esempio distinguere i [[batterio|batteri]]. Una descrizione a sé merita tuttavia lo [[SNOM]] (''Scanning Near-Field Optical Microscope''), descritto in seguito, che permette di raggiungere risoluzioni fino a 200&nbsp;nm. In pratica migliora la visione a occhio nudo di 500 volte.
 
* Il microscopio elettronico a trasmissione ('''TEM''') utilizza come sorgente un fascio doppio di elettroni di un certo potenziale, ha risoluzione molto maggiore di quello ottico e permette di rilevare, oltre all'immagine, anche numerose altre proprietà fisiche del campione, ma è molto complesso e costoso, deve funzionare in assenza d'aria, inoltre non fornisce immagini in vivo. Le immagini, ottenute al di fuori del campo del visibile, possono essere in bianco e nero o a ''falsi colori''. Permette con i maggiori ingrandimenti di distinguere gli [[atomo|atomi]]. È quasi mille volte più potente del microscopio ottico ed ha una risoluzione che si spinge, in casi estremi, fino a 0,05 nanometri.
 
* Il microscopio a scansione di sonda ('''SPM''') esplora il preparato in maniera analoga a quello che fa una puntina grammofonica, basandosi su diversi fenomeni fisici di scala molecolare e atomica come l'[[effetto tunnel]] e le [[forze di Van der Waals]]. Ha una risoluzione limitata, di 10&nbsp;nm, ma permette rappresentazioni tridimensionali di cellule e di strutture cellulari.
 
* Altri tipi di microscopi sfruttano diverse radiazioni, le onde acustiche e differenti fenomeni fisici.
 
''Data la vastità dell'argomento, quella che segue è solamente una sintesi. Per l'approfondimento si rimanda alle specifiche singole voci.''
 
== Microscopio ottico ==
{{vedi anche|Microscopio ottico}}
I microscopi ottici, che utilizzano le lunghezze d'onda della luce visibile, sono i più semplici e quelli di più comune utilizzo. Sono costituiti da un sistema di lenti adatto a focalizzare la luce nell'occhio o in un altro dispositivo rivelatore. L'ingrandimento tipico dei microscopi ottici, all'interno dello spettro di luce visibile, è fino a 1500x, con un limite di risoluzione teorica di circa 0,2&nbsp;µm. Tecniche più sofisticate, come la [[microscopio confocale|microscopia confocale]] a raggio [[laser]] o la [[vertico SMI]], possono superare questo limite di ingrandimento, ma la risoluzione è limitata dalla [[diffrazione]]. L'utilizzo di lunghezze d'onda più piccole, come l'ultravioletto, è un modo per migliorare la risoluzione spaziale del microscopio ottico, così come la [[Microscopio ottico a scansione in campo prossimo|microscopia ottica in campo prossimo]] (SNOM).
 
== Microscopio a raggi X ==
{{Vedi anche|Microscopio a raggi X}}
Tale microscopio è basato sull'utilizzo di radiazioni X molli, come radiazioni [[Sincrotrone|sincrotroniche]].
A differenza della luce visibile, i raggi-X non si riflettono né si rifrangono facilmente, e sono invisibili per l'occhio umano, ponendo diversi problemi tecnologici. La risoluzione è intermedia tra il microscopio ottico ed elettronico, ma con diversi vantaggi nell'osservazione delle strutture biologiche.
 
Viene utilizzato anche per studiare le strutture di molecole e ioni presenti all'interno della cellula mediante analisi delle figure di diffrazione analogamente alla [[cristallografia a raggi X]]. Quando i raggi emessi attraversano le strutture cellulari subiscono delle diffrazioni che verranno impresse su una lastra fotografica, apparendo come delle sfocate bande concentriche. Dalla analisi della differente disposizione di tali bande si potrà determinare la distribuzione atomica delle molecole all'interno dei tessuti analizzati.
 
== Microscopi elettronici e ionici ==
{{Vedi anche|Microscopio elettronico}}
[[File:Simens numeri.jpg|thumb|upright=1.6|Microscopio elettronico (TEM), [[Siemens (azienda)|Siemens]] del [[1969]].
1 - cavo dell'alta tensione;
2 - emissione di elettroni;
3 - motori di centraggio del raggio;
4 - condensatori;
5 - regolazione dei diaframmi;
6 - portacampione;
7 - obiettivo;
8 - proiettori;
9 - microscopio ottico stereoscopico;
10 - schermo fluorescente;
11 - tubi del sistema per produrre il vuoto;
12 - sposta-preparati;
13 - controllo del vuoto ed ingrandimenti;
14 - manopole di messa a fuoco]]
 
Il '''microscopio elettronico''' "illumina" i campioni in esame, invece che con un fascio di [[luce visibile]], con un fascio di [[elettrone|elettroni]], di lunghezza d'onda quindi più breve, e per il principio di Abbe permette di ottenere immagini con una [[Risoluzione angolare|risoluzione]] molto maggiore.
Al contrario dei microscopi ottici utilizzano lenti magnetiche per deviare i fasci di elettroni (cariche elettriche in movimento, quindi sensibili al campo magnetico) e quindi ingrandire le immagini.
 
I microscopi elettronici sono molto costosi, devono operare in assenza d'aria (sotto vuoto), in assenza di vibrazioni e di campi magnetici. Inoltre hanno bisogno di correnti a tensioni molto elevate (almeno 5kV) e molto stabili.
 
Per il medesimo principio di Abbe, diminuendo ulteriormente la lunghezza d'onda e utilizzando sempre particelle cariche, si possono avere strumenti con risoluzioni maggiori, utilizzando ad esempio ioni.
 
=== Microscopio elettronico a scansione (SEM) ===
{{vedi anche|Microscopio elettronico a scansione}}
Il '''microscopio elettronico a scansione''', al contrario di quello a trasmissione, ricava l'immagine illuminando con un fascio di elettroni un oggetto anche relativamente grande (un insetto per esempio) e rilevando gli elettroni secondari riflessi, e può quindi fornire immagini 3D.
Può analizzare solo oggetti [[conduttore elettrico|conduttori]] o semi-conduttori. Gli oggetti organici devono quindi essere prima rivestiti con una sottile lamina metallica.
Questo strumento ha la necessità di operare in condizioni di vuoto elevato: per questo è stato sviluppato il microscopio elettronico ambientale a scansione che, libero da questo vincolo, è in grado di analizzare campioni di materiale organico controllando e modificando a piacimento le condizioni di [[temperatura]], [[pressione]] ed [[umidità]].
 
=== Microscopio elettronico a trasmissione (TEM) ===
{{vedi anche|Microscopio elettronico a trasmissione}}
<nowiki> </nowiki>Il '''microscopio elettronico a trasmissione''' fa attraversare un campione molto sottile (da '''5''' a '''500&nbsp;nm''') da un fascio di elettroni, quindi con un insieme di [[magnete|magneti]] (che funzionano come le lenti del microscopio ottico) ingrandisce l'immagine ottenuta che viene infine proiettata su uno schermo [[fluorescenza|fluorescente]] rendendola visibile.
Dà immagini della struttura '''interna''' dell'oggetto esaminato, al contrario del SEM che ne dà solo la superficie, ma permette di ottenere solo immagini 2D. Raggiunge i nanometri, permettendo di vedere anche le molecole più piccole.
 
Ulteriori miglioramenti hanno prodotto l'HRTEM (''High-Resolution Transmission Electron Microscope''), col quale è stato possibile distinguere i singoli atomi di [[litio]] in un composto.
 
=== Microscopio elettronico a diffrazione ===
{{...}}
=== Microscopio elettronico ad emissione di campo ===
 
All'interno di un bulbo di vetro è fatto il vuoto. La superficie del bulbo è ricoperta da una patina fluorescente, mentre al centro è contenuta una punta di tungsteno dal diametro molto piccolo. Tra la punta e la superficie del bulbo è presente una differenza di potenziale molto alta, in modo che nei punti prossimi alla punta esista un campo elettrico molto intenso (si raggiungono valori nell'ordine dei milioni di volt al centimetro). Se la punta è carica negativamente gli elettroni di essa vengo strappati dal campo elettrico e accelerati radialmente verso lo schermo: dall'immagine ottenuta si può ricostruire la disposizione degli atomi della punta stessa con una risoluzione di circa 25 [[Ångström|Å]]. L'incertezza è dovuta ad effetti di diffrazione quantistica e al moto disordinato degli elettroni, le cui velocità mantengono quindi componenti non radiali anche dopo l'estrazione. Nel caso in cui, invece, all'interno del bulbo sia iniettato dell'elio e la punta sia caricata positivamente sono le molecole di gas (ionizzato in prossimità della punta) ad essere accelerate verso le schermo. Siccome questi ioni sono molto più pesanti degli elettroni la lunghezza d'onda quantistica è decisamente ridotta e la risoluzione dello strumento è di circa 1 ångstrom. L'immagine prodotta sullo schermo presenta quindi chiazze scure (in prossimità degli interstizi tra due atomi) e tracce dell'arrivo delle molecole di elio (ionizzate dai nuclei).
Si sono raggiunti ingrandimenti pari a 2000000x (10 volte maggiori rispetto al microscopio a scansione per effetto tunnel).
 
=== Microscopio ionico ===
Il microscopio ionico si colloca sulla stessa linea teorica che permette di passare dal microscopio ottico al microscopio elettronico, ma utilizzando fasci di [[Ione|ioni]] invece che di [[elettroni]]; ricordando poi la relazione fondamentale della meccanica ondulatoria:
 
<math>\lambda = {h\over\ mv } </math>
 
esposta da [[Louis-Victor Pierre Raymond de Broglie|de Broglie]] nel concetto di [[dualismo onda-particella]], è evidente che, aumentando la massa ''m'' delle particelle ''illuminanti'' il campione, diventa possibile lavorare con lunghezze d'onda associate minori, che consentono quindi, per il principio di Abbe, risoluzioni ancora maggiori.
 
Un esempio di microscopio ionico è dato dallo SHIM, acronimo di ''Scanning Helium Ion Microscope''.
 
== Microscopi a scansione di sonda (SPM) ==
=== Microscopio a scansione per effetto tunnel (STM) ===
{{Vedi anche|Microscopio_a_effetto_tunnel}}
 
Questo particolare tipo di microscopio consente di analizzare la superficie di un campione [[Conduttore elettrico|conduttore]] o [[semiconduttore]] drogato utilizzando, come sensore, una punta cresciuta su di un cristallo singolo di [[tungsteno]] e rastremata alla sommità fino allo spessore di qualche atomo: a questa punta, posta ad una distanza molto ravvicinata dal campione, viene applicato un piccolo potenziale (ad esempio dell'ordine del volt) rispetto al campione. Quando la punta è sufficientemente vicina al campione una corrente fluisce dalla punta verso il campione (o viceversa) per [[effetto tunnel]] elettronico. Poiché la corrente, a parità di tensione applicata, varia con la distanza della punta dalla superficie del campione, tramite un processo di [[retroazione]] è possibile mantenere costante tale corrente (o distanza), muovendo la punta sull'asse ortogonale alla superficie del campione con la precisione garantita da un attuatore [[piezoelettricità|piezoelettrico]]. Effettuando una scansione su tutta la superficie del campione e registrando punto per punto i valori della corrente, è possibile ricostruirne un modello tridimensionale. Mediante tale tecnica, si riesce a raggiungere precisioni molto elevate, fino a 1 Å.
 
=== Microscopio ottico a scansione in campo prossimo (SNOM) ===
{{vedi anche|Microscopio ottico a scansione in campo prossimo}}
La microscopia ottica è stata la prima a nascere ed ancora oggi è la più popolare ed usata per
via della sua semplicità ed immediatezza nell’interpretazione dei risultati. Il limite principale
di questo tipo di microscopia sta nella risoluzione massima ottenibile che è strettamente legata
alla [[diffrazione]]. Il cosiddetto criterio di Abbe limita infatti la risoluzione massima a circa 0.5 λ/(n sin θ) per un sistema ottico avente apertura numerica n sin θ, che impieghi luce di lunghezza d’onda
λ. Per luce nello spettro visibile essa si attesta sui 0.2 ÷ 0.4&nbsp;µm, circa due ordini di grandezza
più grande rispetto alle tecniche di microscopia moderne non ottiche. Nel [[1928]] [[E. H. Synge]], in una discussione con [[Albert Einstein]], propose lo schema di un nuovo microscopio, il microscopio ottico a scansione in campo prossimo, [[SNOM]] (''Scanning Near-Field Optical Microscope''), che superava il limite di diffrazione collocato: il campione doveva essere illuminato attraverso una piccolissima apertura avente dimensioni molto minori della lunghezza d’onda della luce impiegata, posta a distanze z << λ dalla sua superficie, nel cosiddetto campo prossimo (''near-field''); la luce raccolta da sotto il campione (nel ''far-field'') contiene informazione relativa ad una piccola porzione di superficie delle dimensioni dell’apertura di illuminazione. I primi a superare il limite di diffrazione usando luce visibile furono Pohl e altri all'IBM di Zurigo sfruttando parte della tecnologia già adoperata nel microscopio a scansione ad effetto tunnel (STM); usando radiazione a λ = 488&nbsp;nm ottennero risoluzioni di 25&nbsp;nm ovvero di λ/20. L’illuminazione del campione veniva fatta focalizzando la luce di un laser su un cristallo di quarzo appuntito che guidava la luce nella parte terminale ricoperta da un film di alluminio che presentava un’apertura di qualche decina di nm dalla quale fuoriusciva la luce. Le sonde utilizzate oggi sono delle fibre ottiche monomodo appuntite con un’apertura terminale di 50 ÷ 150&nbsp;nm e ricoperte da un sottile strato di alluminio, che serve a convogliare una maggiore quantità di luce sull’estremità per effetto punta. Le punte vengono prodotte stirando le fibre con delle apposite ''micropipette pullers'', riscaldando il punto dove si vuole ''rompere'' mediante il fascio focalizzato di un laser a CO<sub>2</sub>; altre tecniche di attacco chimico di fibre ottiche in HF, consentono di formare strutture appuntite di geometria variabile e controllata. Un film di [[alluminio]] (tipicamente uno spessore di 1000 Å) viene depositato per evaporazione sulla fibra in rotazione attorno al suo asse, angolata di circa 30º rispetto all’orizzontale, in modo la lasciare un’apertura non ricoperta di diametro variabile dai 20 ai 500&nbsp;nm. {{chiarire|Più recentemente|quando?}}, l'impiego di punte metalliche (oro, argento) con raggi di curvatura apicali dell'ordine dei 10&nbsp;nm, consente di raggiungere risoluzioni spaziali sub-10&nbsp;nm nello spettro visibile. L'effetto fisico alla base di questo tipo di sonde è l'amplificazione di campo (''field enhancement''), legata da un lato alla geometria della sonda (punta, effetto parafulmine), dall'altro alle proprietà elettroniche dei materiali (oscillazioni collettive di elettroni, ''surface plasmons'') che consentono di ottenere fattori di ''enhancement'' fino a 10<sup>6</sup>.
 
=== Microscopio a forza atomica (AFM) ===
{{Vedi anche|Microscopio a forza atomica}}
[[File:AFM (used) cantilever in Scanning Electron Microscope, magnification 1000x.JPG|thumb|Il ''cantilever'' di un microscopio a forza atomica]]
 
Il [[microscopio a forza atomica]] permette di effettuare analisi non distruttive di superfici, con una risoluzione inferiore al [[nanometro]]. Una sonda di dimensioni dell'ordine del [[micrometro]], detto ''cantilever'', esplora la superficie da analizzare a brevissima distanza da essa (circa 1 nanometro = anche a 10 [[Angstrom]]). Interagendo con gli atomi del campione, per effetto delle [[Forza di van der Waals|forze di Van der Waals]], subisce microscopiche deflessioni che, attraverso sensibilissimi dispositivi (leva ottica ed altri), vengono tradotte nei dettagli di un'immagine topografica tridimensionale della superficie del campione. Rispetto allo ''Scanning Electron Microscope'' (SEM) e allo ''Scanning Tunnelling Microscope'' (STM), il microscopio a forza atomica ha il vantaggio di consentire analisi non distruttive, su campioni non trattati e di adattarsi anche a campioni di materiale non conduttore fornendone una reale mappa tridimensionale, a fronte di un'area ed una profondità di scansione limitate e di un tempo necessario all'indagine relativamente lungo. Tipicamente viene impiegato per esaminare macromolecole biologiche, parti di microorganismi, dispositivi a semiconduttore.
 
== Altre tipologie di microscopio ==
=== Microscopio acustico ===
Si tratta d'uno strumento che impiega frequenze [[ultrasuoni|ultrasoniche]]. Opera non distruttivamente, penetrando molti solidi al pari d'un ecografo. Il microscopio acustico risale al 1836, quando S. Ya. Sokolov lo propose come mezzo per produrre immagini ingrandite a mezzo di frequenze acustiche di 3&nbsp;GHz. Fino al [[1959]], quando Dunn Fry effettuò i primo prototipi, non fu possibile costruirne alcuno. Strumenti di reale utilità applicativa arrivarono solo negli [[anni 1970|anni settanta]]. Attualmente sono tre le tipologie di strumenti usati:
* microscopio a scansione acustica (SAM)
* microscopio a scansione laser acustica (SLAM)
* microscopio a scansione acustica in modalità C (C-SAM), il tipo più diffuso.
 
I campi d'applicazione spaziano dagli utilizzi tecnologici nei controlli di qualità di elementi meccanici ed elettronici, fino ad indagini di biologia cellulare, investigando comportamento meccanico e caratteristiche di strutture quali il [[citoscheletro]].
 
===Microscopio confocale + forza atomica + riflessione interna totale in fluorescenza===
I laboratori di nanoscienze NNL del CNR hanno realizzato un microscopio che nasce dall'unione di tre strumenti: un microscopio confocale laser per studiare il volume (vista dall'esterno), un microscopio a forza atomica per visualizzare i dettagli della superficie (vista dall'alto), e un microscopio a riflessione interna totale in fluorescenza, che mostra come la cellula aderisce al supporto.
 
Il microscopio permette una visione quanto mai completa della cellula, oltre a misurare l'elasticità della membrana cellulare, importante ''marker'', che lo rende utile nello diagnosi del tumore.
 
Ogni strumento è capace di raggiungere risoluzioni di miliardesimi di metro. Una delle prime applicazioni sarà il test della somministrazione cellulare selettiva di antitumorali mediante nanocapsule.
 
== Galleria di microscopi ottici ==
<gallery>
Immagine:Leeuwenhoek Microscope.png|Microscopio semplice di [[Antoni van Leeuwenhoek]] (metà del [[XVII secolo]]).
Immagine:4 cuff 1744 - needham 1750.jpg|Modello di microscopio composto di John Cuff del [[1744]], con accessori.
Immagine:Compound microscope john cuff 1750.jpg|Microscopio di John Cuff del [[1750]].
Immagine:Microscope1751.jpg|Microscopio del [[1751]].
Immagine:Microscope Zeiss 1879.jpg|Microscopio [[Carl Zeiss (azienda)|Zeiss]] del [[1879]].
Immagine:Microscopio1.jpg|Modello di microscopio del [[1913]].
Immagine:Old light microscope.jpg|Microscopio degli anni intorno al [[1920]].
Immagine:Microscopio reichert1.jpg|Microscopio [[Reichert]] degli [[Anni 1950|anni Cinquanta]].
</gallery>
 
== Bibliografia ==
* {{cita libro|Maurice | Langeron | Précis De Microscopie. Technique. Expérimentation. Diagnostic | 1949 | Masson | Paris}}
* {{cita libro|Paola | Manfredi | Microscopia per il naturalista dilettante | 1964 | Hoepli | Milano | ed=2}}
* {{cita libro|J(avier) | Bernis Mateu | Tavole di Microscopia | 1969 | Giunti | Firenze | coautori=Tino Lipparini}}
* {{cita libro|Peter | Healey | Microscopi e vita al microscopio | 1970 | Arnoldo Mondadori | Milano}}
* {{cita libro|Paolo | Castano | Microscopia ottica e fotomicroscopia | 1974 | Tamburini | Milano}}
* {{cita libro|cognome=Castano |nome=Paolo |coautori=Silvia Rossi |titolo=La fotografia al microscopio |anno= 1984 |editore=Il polso |città=Milano }}
* {{cita libro|Loretta | Ferri | Tecniche di microscopia | 2003 | Quattroventi | Urbino | coautori=Loretta Guidi, Michela Battistelli|ISBN=88-392-0648-5 }}
* {{cita libro|Flavia | Pinzari | Microscopia elettronica a scansione e microanalisi | 2008 | Gangemi | Roma}}
* {{cita libro|Ermanno | Bonucci | Manuale di istochimica | 1981 | Lombardo | Roma |ISBN=978-88-7020-006-5 }}
* {{cita libro|Michael H. | Ross | Atlante di Istologia e Anatomia microscopica | 2010 | C.E.A. | Rozzano | coautori=Wojciech Pawlina, Todd A. Barnash|ISBN=978-88-08-18320-0 }}
* {{cita web|http://www.funsci.com/fun3_it/sini/mo/m_ottica.pdf|Giovanni Pietro Sini; Donato Di Ferdinando, Gabriele Sirri, "Problemi tecnici della microscopia ottica", Bologna, Ist. Naz. di Fisica Nucleare - Sez. di Bologna e Univ. di Bologna - Dipart. di Fisica, 2005 (517 pagg.)|26-07-2011}}
* {{cita web|http://www.funsci.com/fun3_it/sini/mo/elementi_pratici.pdf|Giovanni Pietro Sini, "Elementi pratici di microscopia ottica - Introduzione per un uso un po' più consapevole di questo oggetto sconosciuto", Bologna, 2007 (122 pagg.)|26-07-2011}}
* {{cita web|http://www.leica-microsystems.com/science-lab/topics/basics-in-microscopy/|"Basics in Microscopy" (Leica)|24-02-2013}}
* {{cita web|http://www.microscopyu.com/tutorials/|Nozioni generali di microscopia: tutorial interattivi (Nikon)|24-02-2013}}
* {{cita web|http://www.olympusmicro.com/index.html|Nozioni generali di microscopia, con tutorial interattivi (Olympus)|24-02-2013}}
* {{cita web|http://www.zeiss.de/C1256B5E0051569F/EmbedTitelIntern/Microscopy_from_the_very_beginning/$File/Microscopy_from_the_very_beginning.pdf|H. G. Kapitza, "Microscopy from the very beginning", 2ª ed., Oberkochen e Jena, Carl Zeiss, 1994 e 1997 (48 pagg.)|24-02-2013}}
* {{cita web|http://www.zeiss.de/C1256B5E0051569F/EmbedTitelIntern/MikroskopierenvonAnfangan/$File/Mikroskopieren_von_Anfang_an.pdf|H. G. Kapitza, "Mikroskopieren von Anfang an", 2ª ed., Oberkochen e Jena, Carl Zeiss, 1994 e 1997 (52 pagg.)|24-02-2013}}
* {{cita web|http://www.zeiss.it/C1257185004820FF?Opendatabase|Carl Zeiss Italia S.p.A., "Compendio di Microscopia"|15-09-2009}}
 
== Voci correlate ==
*[[Consiglio nazionale delle ricerche]]
* [[Analisi dei guasti]]
* [[Ottica]]
* [[Lente]]
* [[Microtomo]]
* [[Ultramicrotomo]]
* [[Sezione sottile]]
* [[Istologia]]
 
== Altri progetti ==
{{interprogetto|commons=Category:Microscopes|wikt=microscopio}}
 
== Collegamenti esterni ==
* {{Thesaurus BNCF}}
* [http://brunelleschi.imss.fi.it/esplora/microscopio/dswmedia/storia/istoria1.html Pagina sulla storia del microscopio nel sito del Museo Galileo di Firenze]
* [http://scienze.dgbm.unina.it/TecCitolIsto/appunti/2007-08/007-ME.pdf Descrizione dettagliata di TEM e SEM e loro funzionamento]
* [http://albertlleal.com/microphotography.html Fotografia de natura e microscopio SEM]
 
{{Portale|Italia|biologia|marina|scienza}}
{{Laboratorio chimico}}
{{portale|chimica|fisica|ingegneria}}
 
[[Categoria:Microscopi|Navi da ricerca|Urania]]
[[Categoria:Consiglio Nazionale delle Ricerche]]