Content deleted Content added
→top: ce lead, add wikilink, rm context tag |
|||
(35 intermediate revisions by 19 users not shown) | |||
Line 1:
Within [[statistics|statistical]] [[factor analysis]], the '''factor regression model''',<ref>{{cite journal|last=Carvalho|first=Carlos M.|title=High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics|journal=Journal of the American Statistical Association|date=1 December 2008|volume=103|issue=484|pages=1438–1456|doi=10.1198/016214508000000869|pmc=3017385|pmid=21218139}}</ref> or hybrid factor model,<ref name="meng2011">{{cite journal|last=Meng |first=J. |title=Uncover cooperative gene regulations by microRNAs and transcription factors in glioblastoma using a nonnegative hybrid factor model |journal=International Conference on Acoustics, Speech and Signal Processing |year=2011 |url=http://www.cmsworldwide.com/ICASSP2011/Papers/ViewPapers.asp?PaperNum=4439 |url-status=dead |archiveurl=https://web.archive.org/web/20111123144133/http://www.cmsworldwide.com/ICASSP2011/Papers/ViewPapers.asp?PaperNum=4439 |archivedate=2011-11-23 }}</ref> is a special [[Multivariate normal distribution|multivariate]] [[Mathematical model|model]] with the following form:
:<math> \mathbf{y}_n= \mathbf{A}\mathbf{x}_n+ \mathbf{B}\mathbf{z}_n +\mathbf{c}+\mathbf{e}_n </math>
where,
:<math> \mathbf{y}_n </math> is the <math>n</math>-th <math> G \times 1 </math> (known) [[observation]].
:<math> \mathbf{x}_n </math> is the <math>n</math>-th sample <math> L_x </math> (unknown) hidden factors.
:<math> \mathbf{A} </math> is the (unknown) loading matrix of the
:<math> \mathbf{z}_n </math> is the <math>n</math>-th sample <math> L_z </math> (known) design factors.
:<math> \mathbf{B} </math> is the (unknown) regression coefficients of the
:<math> \mathbf{c} </math> is a [[vector (mathematics and physics)|vector]] of (unknown) [[constant term]] or intercept.
:<math> \mathbf{e}_n </math> is a vector of (unknown)
== Relationship between factor regression model, factor model and regression model ==
The factor regression model can be viewed as a combination of [[factor analysis]] model (<math> \mathbf{y}_n= \mathbf{A}\mathbf{x}_n+ \mathbf{c}+\mathbf{e}_n </math>) and [[regression model]] (<math> \mathbf{y}_n= \mathbf{B}\mathbf{z}_n +\mathbf{c}+\mathbf{e}_n </math>)
Alternatively, the model can be viewed as a
▲Alternatively, the model can be viewed as a single [[factor analysis]] model, except that, part of the factor matrix are already known.
:<math>
\begin{align}
Line 42 ⟶ 35:
where, <math> \mathbf{D}=\begin{bmatrix}
\mathbf{A} & \mathbf{B}
\end{bmatrix} </math> is the loading matrix of the hybrid factor model and <math> \mathbf{f}_n=\begin{bmatrix}
\mathbf{x}_n \\
\mathbf{z}_n\end{bmatrix} </math> are the factors, including the known factors and unknown factors.
== Software ==
[https://www2.stat.duke.edu/~mw/mwsoftware/BFRM/index.html Open source software to perform factor regression is available].
==References==
{{Reflist}}
[[Category:Factor analysis]]
[[Category:Latent variable models]]
[[Category:Regression models]]
|