Factor regression model: Difference between revisions

Content deleted Content added
Jia.meng (talk | contribs)
No edit summary
top: ce lead, add wikilink, rm context tag
 
(21 intermediate revisions by 18 users not shown)
Line 1:
TheWithin [[statistics|statistical]] [[factor analysis]], the '''factor regression model''',<ref>{{cite journal|last=Carvalho|first=Carlos M.|title=High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics|journal=Journal of the American Statistical Association|date=1 December 2008|volume=103|issue=484|pages=1438–1456|doi=10.1198/016214508000000869|pmc=3017385|pmid=21218139}}</ref> or hybrid factor model,<ref name="meng2011">{{cite journal|last=Meng |first=J. |title=Uncover cooperative gene regulations by microRNAs and transcription factors in glioblastoma using a nonnegative hybrid factor model |journal=International Conference on Acoustics, Speech and Signal Processing |year=2011 |url=http://www.cmsworldwide.com/ICASSP2011/Papers/ViewPapers.asp?PaperNum=4439 |url-status=dead |archiveurl=https://web.archive.org/web/20111123144133/http://www.cmsworldwide.com/ICASSP2011/Papers/ViewPapers.asp?PaperNum=4439 |archivedate=2011-11-23 }}</ref> is a special [[Multivariate normal distribution|multivariate]] [[Mathematical model|model]] with the following form.:
:<math> \mathbf{y}_n= \mathbf{A}\mathbf{x}_n+ \mathbf{B}\mathbf{z}_n +\mathbf{c}+\mathbf{e}_n </math>
where,
 
:<math> \mathbf{y}_n </math> is the <math>n</math>-th <math> G \times 1 </math> (known) [[observation]].
 
:<math> \mathbf{x}_n </math> is the <math>n</math>-th sample <math> L_x </math> (unknown) hidden factors.
Line 13:
:<math> \mathbf{B} </math> is the (unknown) regression coefficients of the design factors.
 
:<math> \mathbf{c} </math> is a [[vector (mathematics and physics)|vector]] of (unknown) [[constant term]] or intercept.
 
:<math> \mathbf{e}_n </math> is a vector of (unknown) errors, often [[white Gaussian noise]].
 
== The Relationship between Factorfactor Regressionregression Modelmodel, Factorfactor Modelmodel and Regressionregression Modelmodel ==
The factor regression model can be viewed as a combination of [[factor analysis]] model (<math> \mathbf{y}_n= \mathbf{A}\mathbf{x}_n+ \mathbf{c}+\mathbf{e}_n </math>) and [[regression model]] (<math> \mathbf{y}_n= \mathbf{B}\mathbf{z}_n +\mathbf{c}+\mathbf{e}_n </math>).
 
Alternatively, the model can be viewed as a special kind of factor model, the hybrid factor model <ref name="meng2011"/>
Line 38:
\mathbf{x}_n \\
\mathbf{z}_n\end{bmatrix} </math> are the factors, including the known factors and unknown factors.
 
== Software ==
[https://www2.stat.duke.edu/~mw/mwsoftware/BFRM/index.html Open source software to perform factor regression is available].
Factor regression software is available from here<ref group="West's Group">{{cite web|last=Wang|first=Quanli|title=BFRM|url=http://www.isds.duke.edu/research/software/west/bfrm/|work=BFRM}}</ref>.
== Reference==
{{Reflist}}
 
==References==
{{Reflist}}
 
[[Category:MultivariateFactor statisticsanalysis]]
[[Category:Latent variable models]]
[[Category:Regression models]]