Content deleted Content added
m Fixed header Reference => References , Reference => References (Build J2) |
→top: ce lead, add wikilink, rm context tag |
||
(19 intermediate revisions by 16 users not shown) | |||
Line 1:
:<math> \mathbf{y}_n= \mathbf{A}\mathbf{x}_n+ \mathbf{B}\mathbf{z}_n +\mathbf{c}+\mathbf{e}_n </math>
where,
:<math> \mathbf{y}_n </math> is the <math>n</math>-th <math> G \times 1 </math> (known) [[observation]].
:<math> \mathbf{x}_n </math> is the <math>n</math>-th sample <math> L_x </math> (unknown) hidden factors.
Line 13:
:<math> \mathbf{B} </math> is the (unknown) regression coefficients of the design factors.
:<math> \mathbf{c} </math> is a [[vector (mathematics and physics)|vector]] of (unknown) [[constant term]] or intercept.
:<math> \mathbf{e}_n </math> is a vector of (unknown) errors, often [[white Gaussian noise]].
==
The factor regression model can be viewed as a combination of [[factor analysis]] model (<math> \mathbf{y}_n= \mathbf{A}\mathbf{x}_n+ \mathbf{c}+\mathbf{e}_n </math>) and [[regression model]] (<math> \mathbf{y}_n= \mathbf{B}\mathbf{z}_n +\mathbf{c}+\mathbf{e}_n </math>).
Alternatively, the model can be viewed as a special kind of factor model, the hybrid factor model <ref name="meng2011"/>
Line 38:
\mathbf{x}_n \\
\mathbf{z}_n\end{bmatrix} </math> are the factors, including the known factors and unknown factors.
== Software ==
[https://www2.stat.duke.edu/~mw/mwsoftware/BFRM/index.html Open source software to perform factor regression is available].
==References==
{{Reflist}}
[[Category:Factor analysis]]
[[Category:Latent variable models]]
[[Category:Regression models]]
|