Content deleted Content added
m Open access bot: add pmc identifier to citation with #oabot. |
→top: ce lead, add wikilink, rm context tag |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 1:
▲The '''factor regression model''',<ref>{{cite journal|last=Carvalho|first=Carlos M.|title=High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics|journal=Journal of the American Statistical Association|date=1 December 2008|volume=103|issue=484|pages=1438–1456|doi=10.1198/016214508000000869|pmc=3017385}}</ref> or hybrid factor model,<ref name="meng2011">{{cite journal|last=Meng |first=J. |title=Uncover cooperative gene regulations by microRNAs and transcription factors in glioblastoma using a nonnegative hybrid factor model |journal=International Conference on Acoustics, Speech and Signal Processing |year=2011 |url=http://www.cmsworldwide.com/ICASSP2011/Papers/ViewPapers.asp?PaperNum=4439 |deadurl=yes |archiveurl=https://web.archive.org/web/20111123144133/http://www.cmsworldwide.com/ICASSP2011/Papers/ViewPapers.asp?PaperNum=4439 |archivedate=2011-11-23 |df= }}</ref> is a special [[Multivariate normal distribution|multivariate]] model with the following form.
:<math> \mathbf{y}_n= \mathbf{A}\mathbf{x}_n+ \mathbf{B}\mathbf{z}_n +\mathbf{c}+\mathbf{e}_n </math>
where,
:<math> \mathbf{y}_n </math> is the <math>n</math>-th <math> G \times 1 </math> (known) [[observation]].
:<math> \mathbf{x}_n </math> is the <math>n</math>-th sample <math> L_x </math> (unknown) hidden factors.
Line 17 ⟶ 13:
:<math> \mathbf{B} </math> is the (unknown) regression coefficients of the design factors.
:<math> \mathbf{c} </math> is a [[vector (mathematics and physics)|vector]] of (unknown) [[constant term]] or intercept.
:<math> \mathbf{e}_n </math> is a vector of (unknown) errors, often [[white Gaussian noise]].
== Relationship between factor regression model, factor model and regression model ==
Line 44 ⟶ 40:
== Software ==
[https://www2.stat.duke.edu/~mw/mwsoftware/BFRM/index.html Open source software to perform factor regression is available].
==References==
|