Hypergeometric function of a matrix argument: Difference between revisions

Content deleted Content added
No edit summary
The parameter \alpha: WP:SECTIONHEAD: For technical reasons, section headings should not contain <math> markup. (I don't know if this is the preferred way of fixing this. If not, feel free to improve this further!)
 
(19 intermediate revisions by 14 users not shown)
Line 1:
In [[mathematics]], the '''hypergeometric function of a matrix argument''' is a generalization of the classical [[hypergeometric series]]. It is thea closedfunction formdefined expressionby ofan certaininfinite multivariatesummation integrals,which especiallycan onesbe appearingused into randomevaluate matrixcertain theory.multivariate For example, the distributions of the extreme eigenvalues of random matrices are often expressed in terms of the hypergeometric function of a matrix argumentintegrals.
 
Hypergeometric functions of a matrix argument have applications in [[random matrix theory]]. For example, the distributions of the extreme eigenvalues of random matrices are often expressed in terms of the hypergeometric function of a matrix argument.
 
==Definition==
==Definition of <math>_pF_q^{(\alpha)}(a_1,\ldots,a_p;b_1,\ldots,b_q;X)</math>==
 
Let <math>p\ge 0</math> and <math>q\ge 0</math> be integers, and let
Line 9 ⟶ 10:
and parameter <math>\alpha>0</math> is defined as
 
: <math>
<center>
<math>
_pF_q^{(\alpha )}(a_1,\ldots,a_p;
b_1,\ldots,b_q;X) =
Line 19:
C_\kappa^{(\alpha )}(X),
</math>
</center>
 
where <math>\kappa\vdash k</math> means <math>\kappa</math> is a [[partition (number theory)|partition]] of <math>k</math>, <math>(a_i)^{(\alpha )}_{\kappa}</math> is the [[Generalizedgeneralized Pochhammer symbol]], and
<math>C_\kappa^{(\alpha )}(X)</math> is the ``"C" normalization of the [[Jack function]].
 
==Two matrix arguments==
==References==
If <math>X</math> and <math>Y</math> are two <math>m\times m</math> complex symmetric matrices, then the hypergeometric function of two matrix arguments is defined as:
 
: <math>
* K. I. Gross and D. St. P. Richards, "Total positivity, spherical series, and hypergeometric functions of matrix argument", ''J. Approx. Theory'', '''59''', no. 2, 224–246, 1989.
_pF_q^{(\alpha )}(a_1,\ldots,a_p;
b_1,\ldots,b_q;X,Y) =
\sum_{k=0}^\infty\sum_{\kappa\vdash k}
\frac{1}{k!}\cdot
\frac{(a_1)^{(\alpha )}_\kappa\cdots(a_p)_\kappa^{(\alpha )}}
{(b_1)_\kappa^{(\alpha )}\cdots(b_q)_\kappa^{(\alpha )}} \cdot
\frac{C_\kappa^{(\alpha )}(X)
C_\kappa^{(\alpha )}(Y)
}{C_\kappa^{(\alpha )}(I)},
</math>
 
where <math>I</math> is the identity matrix of size <math>m</math>.
* Koev, Plamen and Edelman, Alan, "The efficient evaluation of the hypergeometric function of a matrix argument", ''Mathematics of Computation'', '''75''', no. 254, 833-846, 2006.
 
==Not a typical function of a matrix argument==
* Muirhead, Robb, ''Aspects of Multivariate Statistical Theory'', John Wiley & Sons, Inc., New York, 1984.
 
Unlike other functions of matrix argument, such as the [[matrix exponential]], which are matrix-valued, the hypergeometric function of (one or two) matrix arguments is scalar-valued.
 
==The parameter ''α''==
In many publications the parameter <math>\alpha</math> is omitted. Also, in different publications different values of <math>\alpha</math> are being implicitly assumed. For example, in the theory of real random matrices (see, e.g., Muirhead, 1984), <math>\alpha=2</math> whereas in other settings (e.g., in the complex case—see Gross and Richards, 1989), <math>\alpha=1</math>. To make matters worse, in random matrix theory researchers tend to prefer a parameter called <math>\beta</math> instead of <math>\alpha</math> which is used in combinatorics.
 
The thing to remember is that
 
: <math>\alpha=\frac{2}{\beta}.</math>
 
Care should be exercised as to whether a particular text is using a parameter <math>\alpha</math> or <math>\beta</math> and which the particular value of that parameter is.
 
Typically, in settings involving real random matrices, <math>\alpha=2</math> and thus <math>\beta=1</math>. In settings involving complex random matrices, one has <math>\alpha=1</math> and <math>\beta=2</math>.
 
==References==
 
* K. I. Gross and D. St. P. Richards, "Total positivity, spherical series, and hypergeometric functions of matrix argument", ''J. Approx. Theory'', '''59''', no. 2, 224–246, 1989.
* J. Kaneko, "Selberg Integrals and hypergeometric functions associated with Jack polynomials", ''SIAM Journal on Mathematical Analysis'', '''24''', no. 4, 1086-1110, 1993.
* Koev, Plamen Koev and Edelman, Alan Edelman, "The efficient evaluation of the hypergeometric function of a matrix argument", ''Mathematics of Computation'', '''75''', no. 254, 833-846, 2006.
* Muirhead, Robb Muirhead, ''Aspects of Multivariate Statistical Theory'', John Wiley & Sons, Inc., New York, 1984.
 
==External links==
* [http://www-math.mit.edu/~plamen/software/mhgref.html Software for computing the hypergeometric function of a matrix argument] by Plamen Koev.
 
{{series (mathematics)}}
* [http://www-math.mit.edu/~plamen/software/mhgref.html Software for computing the hypergeometric function of a matrix argument]
[[Category:Hypergeometric functions]]