Content deleted Content added
→Rational function models: moving “a major advantage” from the Disadvantages section to the Advantages section |
m →Bibliography: parameter misuse; |
||
(14 intermediate revisions by 9 users not shown) | |||
Line 51:
::one would need to select four representative points, and perform a linear fit on the model
:::<math>
y = A_0 + A_1x
</math>
::
::This type of fit, with the response variable appearing on both sides of the function, should only be used to obtain starting values for the nonlinear fit. The statistical properties of fits like this are not well understood.
Line 66:
==See also==
* [[Response surface methodology]]
* [[Padé approximant|Pade Approximant]]
==Bibliography==
* {{cite book |author=
* Box, G. E. P. and Draper, Norman. 2007. ''Response Surfaces, Mixtures, and Ridge Analyses'', Second Edition [of ''Empirical Model-Building and Response Surfaces'', 1987], Wiley.
* {{cite book |
* R. H. Hardin and [[Neil Sloane|N. J. A. Sloane]], [http://neilsloane.com/doc/design.pdf "A New Approach to the Construction of Optimal Designs", ''Journal of Statistical Planning and Inference'', vol. 37, 1993, pp. 339-369]
* R. H. Hardin and [[Neil Sloane|N. J. A. Sloane]], [http://neilsloane.com/doc/doeh.pdf "Computer-Generated Minimal (and Larger) Response Surface Designs: (I) The Sphere"]
* R. H. Hardin and [[Neil Sloane|N. J. A. Sloane]], [http://neilsloane.com/doc/meatball.pdf "Computer-Generated Minimal (and Larger) Response Surface Designs: (II) The Cube"]
* {{Cite book| title=Design and Analysis of Experiments | series=Handbook of Statistics| volume=13|editor=Ghosh, S. |editor2=
** {{Cite book|author1=Draper, Norman |author2=Lin, Dennis K. J. |
** {{Cite book|author1=Gaffke, N. |author2=Heiligers, B |
* {{cite book |author=Melas, Viatcheslav B.|title=Functional Approach to Optimal Experimental Design |series=Lecture Notes in Statistics| volume=184 | publisher=Springer-Verlag | year=2006 |isbn=978-0-387-98741-
===Historical===
*{{cite journal
|title=Application de la méthode des moindre quarrés a l'interpolation des suites<!-- [The application of the method of least squares to the interpolation of sequences] -->
|author=
|journal=[[Annales de mathématiques pures et appliquées]]
|volume=6
|year=1815
|pages=242–252
|author-link=Joseph Diaz Gergonne
}}
*{{cite journal
|title=The application of the method of least squares to the interpolation of sequences
|author=
|journal=Historia Mathematica
|volume=1
|issue=4 <!-- |month=November -->
|year=1974 |
|pages=439–447
|edition=Translated by Ralph St. John and [[Stephen M. Stigler|S. M. Stigler]] from the 1815 French
|doi=10.1016/0315-0860(74)90034-2
|author-link=Joseph Diaz Gergonne
|doi-access=free
}}
*{{cite journal
|title=Gergonne's 1815 paper on the design and analysis of polynomial regression experiments
|author=
|journal=[[Historia Mathematica]]
|volume=1
Line 109 ⟶ 112:
|pages=431–439
|doi=10.1016/0315-0860(74)90033-0
|author-link=Stephen M. Stigler
|doi-access=free
}}
* {{cite journal
|author=Smith, Kirstine
Line 118 ⟶ 123:
|issue=1/2
|pages=1–85
|doi=10.1093/biomet/12.1-2.1}}
▲|jstor=2331929}}
==External links==
|