Content deleted Content added
User31415926 (talk | contribs) No edit summary |
B was right |
||
(15 intermediate revisions by 13 users not shown) | |||
Line 1:
{{Short description|Measure of relative information in quantum information theory}}
The '''conditional quantum entropy''' is an [[entropy measure]] used in [[quantum information theory]]. It is a generalization of the [[conditional entropy]] of [[classical information theory]]. For a bipartite state <math>\rho^{AB}</math>, the conditional entropy is written <math>S(A|B)_\rho</math>, or <math>H(A|B)_\rho</math>, depending on the notation being used for the [[von Neumann entropy]]. The quantum conditional entropy was defined in terms of a conditional density operator <math> \rho_{A|B} </math> by [[Nicolas Cerf]] and [[Chris Adami]]
In what follows, we use the notation <math>S(\cdot)</math> for the [[von Neumann entropy]], which will simply be called "entropy".
Line 5 ⟶ 6:
== Definition ==
Given a bipartite quantum state <math>\rho^{AB}</math>, the entropy of the joint system AB is <math>S(AB)_\rho \ \stackrel{\mathrm{def}}{=}\ S(\rho^{AB})</math>, and the entropies of the subsystems are <math>S(A)_\rho \ \stackrel{\mathrm{def}}{=}\ S(\rho^A) = S(\mathrm{tr}_B\rho^{AB})</math> and <math>S(B)_\rho</math>. The von Neumann entropy measures an observer's uncertainty about the value of the state, that is, how much the state is a [[mixed state (physics)|mixed state]].
By analogy with the classical conditional entropy, one defines the conditional quantum entropy as <math>S(A|B)_\rho \ \stackrel{\mathrm{def}}{=}\ S(AB)_\rho - S(B)_\rho</math>.
An equivalent
==Properties==
Line 17 ⟶ 18:
==References==
{{reflist}}
* {{Cite book|title=Quantum Computation and Quantum Information|last1=Nielsen|first=Michael A.|last2=Chuang|first2=Isaac L.|publisher=Cambridge University Press|year=2010|isbn=978-1-107-00217-3|edition=2nd|___location=Cambridge|oclc=844974180|author-link=Michael Nielsen|author-link2=Isaac Chuang|title-link=Quantum Computation and Quantum Information (book)}}
*{{citation|first=Mark M.|last=Wilde|arxiv=1106.1445|title=Quantum Information Theory|pages=xi-xii|year=2017|publisher=Cambridge University Press|bibcode = 2011arXiv1106.1445W |doi=10.1017/9781316809976.001|chapter=Preface to the Second Edition|isbn=9781316809976|s2cid=2515538 }}
[[Category:Quantum mechanical entropy]]
|