Content deleted Content added
→Calculation: Added a tip-off that the condition in the last sentence would be coming |
|||
(23 intermediate revisions by 17 users not shown) | |||
Line 1:
{{Short description|Way of writing a meromorphic function}}
In [[complex analysis]], a '''partial fraction expansion''' is a way of writing a [[meromorphic function]] ==Motivation==
By using [[polynomial long division]] and the partial fraction technique from algebra, any rational function can be written as a sum of terms of the form
A proper rational function
==Calculation==
Let
* The origin lies inside each curve
* No curve passes through a pole of
*
* <math>\lim_{k\rightarrow \infty} d(\Gamma_k) = \infty</math>, where
* one more condition of compatibility with the poles <math>\lambda_k</math>, described at the end of this section
:<math>\lim_{k\rightarrow \infty} \oint_{\Gamma_k} \left|\frac{f(z)}{z^{p+1}}\right| |dz| < \infty</math>▼
▲Suppose also that there exists an integer ''p'' such that
Writing <math>\operatorname{PP}(
▲:<math>\lim_{k\rightarrow \infty} \oint_{\Gamma_k} \left|\frac{f(z)}{z^{p+1}}\right| dz < \infty</math>
▲Writing PP(''f(z)''; ''z = λ<sub>k</sub>'') for the [[principal part]] of the [[Laurent expansion]] of ''f'' about the point ''λ<sub>k</sub>'', we have
:<math>f(z) = \sum_{k=0}^{\infty} \operatorname{PP}(f(z); z = \lambda_k),</math>
if
:<math>f(z) = \sum_{k=0}^{\infty} (\operatorname{PP}(f(z); z = \lambda_k) + c_{0,k} + c_{1,k}z + \cdots + c_{p,k}z^p),</math>
where the coefficients
:<math>c_{j,k} = \operatorname{Res}_{z=\lambda_k} \frac{f(z)}{z^{j+1}}</math>
Note that in the case of
:<math>f(z) = \frac{a_{-m}}{z^m} + \frac{a_{-m+1}}{z^{m-1}} + \cdots + a_0 + a_1 z + \cdots</math>
Line 42:
:<math>\sum_{j=0}^p c_{j,k}z^j = a_0 + a_1 z + \cdots + a_p z^p</math>
so that the polynomial terms contributed are exactly the [[regular part]] of the Laurent series up to
For the other poles
:<math>c_{j,k} = \frac{1}{\lambda_k^{j+1}} \operatorname{Res}_{z=\lambda_k} f(z)</math>
:<math>\sum_{j=0}^p c_{j,k}z^j = [\operatorname{Res}_{z=\lambda_k} f(z)] \sum_{j=0}^p \frac{1}{\lambda_k^{j+1}} z^j</math>
* To avoid issues with convergence, the poles should be ordered so that if
▲To avoid issues with convergence, the poles should be ordered so that if λ<sub>k</sub> is inside Γ<sub>n</sub>, then λ<sub>j</sub> is also inside Γ<sub>n</sub> for all ''j'' < ''k''.
==Example==
The simplest
▲The simplest examples of meromorphic functions with an infinite number of poles are the non-entire trigonometric functions, so take the function tan(''z''). tan(''z'') is meromorphic with poles at ''(n + 1/2)π'', ''n'' = 0, ±1, ±2, ... The contours ''Γ<sub>k</sub>'' will be squares with vertices at ''±πk ± πki'' traversed counterclockwise, ''k'' > 1, which are easily seen to satisfy the necessary conditions.
On the horizontal sides of
:<math>z = t \pm \pi k i,\ \ t \in [-\pi k, \pi k],</math>
Line 67 ⟶ 65:
:<math>|\tan(z)|^2 = \frac{\sin^2(t)\cosh^2(\pi k) + \cos^2(t)\sinh^2(\pi k)}{\cos^2(t)\cosh^2(\pi k) + \sin^2(t)\sinh^2(\pi k)}</math>
<math>\sinh(
:<math>|\tan(z)|^2 < \frac{\cosh^2(\pi k)(\sin^2(t) + \cos^2(t))}{\sinh^2(\pi k)(\cos^2(t) + \sin^2(t))} = \coth^2(\pi k)</math>
For
With this bound on <math>|\tan(
:<math>\oint_{\Gamma_k} \left|\frac{\tan(z)}{z}\right| dz \le \operatorname{length}(\Gamma_k) \max_{z\in \Gamma_k} \left|\frac{\tan(z)}{z}\right| < 8k \pi \frac{\coth(\pi)}{k\pi} = 8\coth(\pi) < \infty.</math>
Therefore
:<math>\tan(z) = \sum_{k=0}^{\infty} (\operatorname{PP}(\tan(z); z = \lambda_k) + \operatorname{Res}_{z=\lambda_k} \frac{\tan(z)}{z}).</math>
The principal parts and
:<math>\operatorname{PP}(\tan(z); z = (n + \frac{1}{2})\pi) = \frac{-1}{z - (n + \frac{1}{2})\pi}</math>
:<math>\operatorname{Res}_{z=(n + \frac{1}{2})\pi} \frac{\tan(z)}{z} = \frac{-1}{(n + \frac{1}{2})\pi}</math>
We can ignore
:<math>\tan(z) = \sum_{k=0}^{\infty} \left[\left(\frac{-1}{z - (k + \frac{1}{2})\pi} - \frac{1}{(k + \frac{1}{2})\pi}\right) + \left(\frac{-1}{z + (k + \frac{1}{2})\pi} + \frac{1}{(k + \frac{1}{2})\pi}\right)\right]</math>
Line 97 ⟶ 95:
===Infinite products===
Because the partial fraction expansion often yields sums of
:<math>\tan(z) = -\sum_{k=0}^{\infty} \left(\frac{1}{z - (k + \frac{1}{2})\pi} + \frac{1}{z + (k + \frac{1}{2})\pi}\right)</math>
Line 113 ⟶ 111:
===Laurent series===
The partial fraction expansion for a function can also be used to find a Laurent series for it by simply replacing the rational functions in the sum with their Laurent series, which are often not difficult to write in closed form. This can also lead to interesting identities if a Laurent series is already known.
Recall that
:<math>\tan(z) = \sum_{k=0}^{\infty} \frac{-2z}{z^2 - (k + \frac{1}{2})^2\pi^2} = \sum_{k=0}^{\infty} \frac{-8z}{4z^2 - (2k + 1)^2\pi^2}.</math>
We can expand the summand using a geometric series:
:<math>\frac{-8z}{4z^2 - (2k + 1)^2\pi^2} = \frac{8z}{(2k + 1)^2\pi^2} \frac{1}{1 - (\frac{2z}{(2k + 1)\pi})^2} = \frac{8}{(2k + 1)^2\pi^2}\sum_{n=0}^{\infty} \frac{2^{2n}}{(2k + 1)^{2n}\pi^{2n}} z^{2n + 1}.</math>
Substituting back,
:<math>\tan(z) = 2\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{2^{2n+2}}{(2k + 1)^{2n+2}\pi^{2n+2}} z^{2n + 1},</math>
which shows that the coefficients
:<math>a_{2n+1} = \frac{T_{2n+1}}{(2n+1)!} = \frac{2^{2n+3}}{\pi^{2n+2}} \sum_{k=0}^{\infty} \frac{1}{(2k + 1)^{2n+2}}</math>
:<math>a_{2n} = \frac{T_{2n}}{(2n)!} = 0,</math>
where
Conversely, we can compare this formula to the Taylor expansion for <math>\tan(
:<math>\tan(z) = z + \frac{1}{3}z^3 + \frac{2}{15}z^5 + \cdots</math>
:<math>\sum_{k=0}^{\infty} \frac{1}{(2k + 1)^2} = \frac{\pi^2}{2^3} = \frac{\pi^2}{8}</math>
:<math>\sum_{k=0}^{\infty} \frac{1}{(2k + 1)^4} = \frac{1}{3} \frac{\pi^4}{2^5} = \frac{\pi^4}{96}.</math>
==See also==
* [[Partial fraction]]
* [[Line integral]]
* [[Residue (complex analysis)]]
* [[Residue theorem]]
==References==
|