Probabilistic latent semantic analysis: Difference between revisions

Content deleted Content added
m Add link to LDA
See also: per WP:SEEALSO, avoid repeating links in this section
 
(5 intermediate revisions by 4 users not shown)
Line 19:
PLSA may be used in a discriminative setting, via [[Fisher kernel]]s.<ref>Thomas Hofmann, [https://papers.nips.cc/paper/1654-learning-the-similarity-of-documents-an-information-geometric-approach-to-document-retrieval-and-categorization.pdf ''Learning the Similarity of Documents : an information-geometric approach to document retrieval and categorization''], [[Advances in Neural Information Processing Systems]] 12, pp-914-920, [[MIT Press]], 2000</ref>
 
PLSA has applications in [[information retrieval]] and [[information filtering|filtering]], [[natural language processing]], [[machine learning]] from text, [[bioinformatics]],<ref>{{Cite conference|chapter=Enhanced probabilistic latent semantic analysis with weighting schemes to predict genomic annotations|conference=The 13th IEEE International Conference on BioInformatics and relatedBioEngineering|last1=Pinoli|first1=Pietro|last2=et|first2=al.|title= areasProceedings of IEEE BIBE 2013 |date=2013|publisher=IEEE|pages=1–4|language=en|doi=10.1109/BIBE.2013.6701702|isbn=978-147993163-7}}
</ref> and related areas.
 
It is reported that the [[aspect model]] used in the probabilistic latent semantic analysis has severe [[overfitting]] problems.<ref>{{cite journal|title=Latent Dirichlet Allocation|journal=Journal of Machine Learning Research|year=2003|first=David M.|last=Blei|author2=Andrew Y. Ng |author3=Michael I. Jordan |volume=3|pages=993–1022|url=http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf|doi=10.1162/jmlr.2003.3.4-5.993}}</ref>
Line 37 ⟶ 38:
 
== See also ==
* [[Latent Dirichlet allocation]]
* [[Compound term processing]]
* [[Pachinko allocation]]
Line 47:
==External links==
*[https://web.archive.org/web/20050120213347/http://www.cs.brown.edu/people/th/papers/Hofmann-UAI99.pdf Probabilistic Latent Semantic Analysis]
*[https://web.archive.org/web/2017111300512120170717235351/http://www.semanticquery.com/archive/semanticsearchart/researchpLSA.html Complete PLSA DEMO in C#]
 
{{DEFAULTSORT:Probabilistic Latent Semantic Analysis}}