Radially unbounded function: Difference between revisions

Content deleted Content added
m clean up, Convert Multiple issues to new style using AWB (10823)
No edit summary
 
(8 intermediate revisions by 5 users not shown)
Line 1:
{{nomore footnotes|date=October 2010}}
{{Multiple issues|
{{Underlinked|date=February 2015}}
{{no footnotes|date=October 2010}}
}}
 
In mathematics, a '''radially unbounded function''' is a function <math>f: \mathbb{R}^n \rightarrow \mathbb{R}</math> for which <ref name="Terrell2009">{{Citation | last1=Terrell | first1=William J. | title=Stability and stabilization | publisher=[[Princeton University Press]] | isbn=978-0-691-13444-4 |mr=2482799 | year=2009}}</ref>
:<math display="block">\|x\| \to \infty \Rightarrow f(x) \to \infty. \, </math>
 
Or equivalently,
:<math>\|x\| \to \infty \Rightarrow f(x) \to \infty. \, </math>
<math display="block">\forall c > 0:\exists r > 0 : \forall x \in \mathbb{R}^n: [\Vert x \Vert > r \Rightarrow f(x) > c]</math>
 
Such functions are applied in [[control theory]] and required in [[Mathematical optimization|optimization]] for determination of [[compact space]]s.
 
Such functions are applied in [[control theory]].
Notice that the norm used in the definition can be any norm defined on <math> \mathbb{R}^n </math>, and that the behavior of the function along the axes does not necessarily reveal that it is radially unbounded or not; i.e. to be radially unbounded the condition must be verified along any path that results in:
:<math display="block">\|x\| \to \infty \, </math>
 
For example, the functions
:<math>\|x\| \to \infty \, </math>
<math display="block">\begin{align}
 
f_1(x) &= (x_1-x_2)^2 \\
For example the functions
:<math>\ f_1 f_2(x) &= (x_1^2+x_2^2)/(1+x_1^2+x_2^2)+(x_1-x_2)^2 \, </math>
\end{align} </math>
 
:<math>\ f_2(x)= (x_1^2+x_2^2)/(1+x_1^2+x_2^2)+(x_1-x_2)^2 \, </math>
 
are not radially unbounded since along the line <math> x_1 = x_2 </math>, the condition is not verified even though the second function is globally positive definite.
 
==References==
{{Reflist}}
*{{Citation | last1=Terrell | first1=William J. | title=Stability and stabilization | publisher=[[Princeton University Press]] | isbn=978-0-691-13444-4 |mr=2482799 | year=2009}}
 
[[Category:Real analysis]]