Quaternionic projective space: Difference between revisions

Content deleted Content added
m Replacing deprecated latex syntax mw:Extension:Math/Roadmap
Adding short description: "Concept in mathematics"
 
(3 intermediate revisions by 3 users not shown)
Line 1:
{{Short description|Concept in mathematics}}
In [[mathematics]], '''quaternionic projective space''' is an extension of the ideas of [[real projective space]] and [[complex projective space]], to the case where coordinates lie in the ring of [[quaternion]]s <math>\mathbb{H}.</math> Quaternionic projective space of dimension ''n'' is usually denoted by
 
Line 14 ⟶ 15:
:<math>[cq_0,cq_1\ldots,cq_n]</math>.
 
In the language of [[Group action (mathematics)|group action]]s, <math>\mathbb{HP}^n</math> is the [[orbit space]] of <math>\mathbb{H}^{n+1}\setminus\{(0,\ldots,0)\}</math> by the action of <math>\mathbb{H}^{\times}</math>, the multiplicative group of non-zero quaternions. By first projecting onto the unit sphere inside <math>\mathbb{H}^{n+1}</math> one may also regard <math>\mathbb{HP}^{n}</math> as the orbit space of <math>S^{4n+3}</math> by the action of <math>\text{Sp}(1)</math>, the group of unit quaternions.<ref>{{cite book |first=Gregory L. |last=Naber, ''|chapter=Physical and Geometrical Motivation |title=Topology, geometry,Geometry and gaugeGauge fields: foundations''|publisher=Springer (|series=Texts in Applied Mathematics |volume=25 |year=2011 |orig-year=1997), p.|isbn=978-1-4419-7254-5 |page=50 |doi=10.1007/978-1-4419-7254-5_0 |chapter-url=https://books.google.com/books?id=MObgBwAAQBAJ&pg=PR1}}</ref> The sphere <math>S^{4n+3}</math> then becomes a [[principal bundle|principal Sp(1)-bundle]] over <math>\mathbb{HP}^n</math>:
 
:<math>\mathrm{Sp}(1) \to S^{4n+3} \to \mathbb{HP}^n.</math>
Line 44 ⟶ 45:
===Characteristic classes===
 
Since <math>\mathbb{HP}^1=S^4</math>, its tangent bundle is stably trivial. The tangent bundles of the rest have nontrivial [[Stiefel–Whitney class|Stiefel–Whitney]] and [[Pontryagin class]]es. The total classes are given by the following formulaformulas:
 
:<math>w(\mathbb{HP}^n) = (1+u)^{n+1}</math>
:<math>p(\mathbb{HP}^n) = (1+v)^{2n+2} (1+4v)^{-1} </math>
 
where <math>v</math> is the generator of <math>H^4(\mathbb{HP}^n;\Z)</math> and <math>u</math> is its reduction mod 2.<ref>Szczarba,{{cite journal |first=R. H. (1964).|last=Szczarba |title=On tangent bundles of fibre spaces and quotient spaces. |journal=American Journal of Mathematics, |volume=86( |issue=4), 685-697|pages=685–697 |year=1964 |doi=10.2307/2373152 |jstor=2373152 |url=https://www.maths.ed.ac.uk/~v1ranick/papers/szczarba.pdf}}</ref>
 
==Special cases==
Line 71 ⟶ 72:
 
==Further reading==
*[[{{cite journal |author-link=V. I. Arnol'd]], |first=V.I. |last=Arnol''d |title=Relatives of the Quotient of the Complex Projective Plane by the Complex Conjugation'', |journal=Tr. Mat. Inst. Steklova, 1999,|volume=224 Volume|pages=56–6 224,|year=1999 Pages|citeseerx=10.1.1.50.6421 56–67|url=http://mi.mathnet.ru/eng/tm/v224/p56 }} Treats the analogue of the result mentioned for quaternionic projective space and the 13-sphere.
* {{Citation
| last = Gormley
| first = P.G.
| title = Stereographic projection and the linear fractional group of transformations of quaternions
| journal = [[Proceedings of the Royal Irish Academy, Section A]]
| volume = 51
| pages = 67&ndash;85
| year = 1947
| jstor = 20488472
}}
 
[[Category:Projective geometry]]