Content deleted Content added
m Dating maintenance tags: {{Orphan}} |
|||
(19 intermediate revisions by 11 users not shown) | |||
Line 1:
In [[algebra]], given
▲In algebra, given a group ''G'', a ''G''-module ''M'' and a ''G''-algebra ''A'', both over a field ''k'', the '''module of covariants''' is the <math>A^G</math>-module
: <math>(M \otimes_k A)^G.</math>
where <math>-^G</math> refers to taking the elements fixed by the action of ''G''; thus, <math>A^G</math> is the [[ring of invariants]] of ''A''.
== See also ==
*[[
== References ==
* M. Brion, ''Sur les modules de covariants'', Ann. Sci. École Norm. Sup. (4) 26 (1993), 1 21.
* M. Van den Bergh, ''Modules of covariants'', Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994), Birkhauser, Basel, pp. 352–362, 1995.
[[Category:Module theory]]
{{linear-algebra-stub}}
|