Content deleted Content added
Tag: section blanking |
mNo edit summary |
||
(34 intermediate revisions by 22 users not shown) | |||
Line 1:
{{Short description|Problem in coordinate geometry}}
{{redirect-distinguish|Distance between two lines|Distance between two skew lines}}
The '''[[distance]] between two [[Parallel (geometry)|parallel]] [[Line (geometry)|lines]]''' in the [[plane (geometry)|plane]] is the minimum distance between any two points.
== Formula and proof ==
Because the lines are parallel, the perpendicular distance between them is a constant, so it does not matter which point is chosen to measure the distance. Given the equations of two non-vertical parallel lines
:<math>y = mx+b_1\,</math>
==See also==▼
:<math>y = mx+b_2\,,</math>
the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line
:<math>y = -x/m \, .</math>
This distance can be found by first solving the [[linear systems]]
:<math>\begin{cases}
y = mx+b_1 \\
y = -x/m \, ,
\end{cases}</math>
and
:<math>\begin{cases}
y = mx+b_2 \\
y = -x/m \, ,
\end{cases}</math>
to get the coordinates of the intersection points. The solutions to the linear systems are the points
:<math>\left( x_1,y_1 \right)\ = \left( \frac{-b_1m}{m^2+1},\frac{b_1}{m^2+1} \right)\, ,</math>
and
:<math>\left( x_2,y_2 \right)\ = \left( \frac{-b_2m}{m^2+1},\frac{b_2}{m^2+1} \right)\, .</math>
The distance between the points is
:<math>d = \sqrt{\left(\frac{b_1m-b_2m}{m^2+1}\right)^2 + \left(\frac{b_2-b_1}{m^2+1}\right)^2}\,,</math>
which reduces to
:<math>d = \frac{|b_2-b_1|}{\sqrt{m^2+1}}\,.</math>
When the lines are given by
:<math>ax+by+c_1=0\,</math>
:<math>ax+by+c_2=0,\,</math>
the distance between them can be expressed as
:<math>d = \frac{|c_2-c_1|}{\sqrt {a^2+b^2}}.</math>
▲==See also==
*[[Distance from a point to a line]]
*[[Skew lines#Distance]]▼
==References==
*''Abstand'' In: ''Schülerduden – Mathematik II''. Bibliographisches Institut & F. A. Brockhaus, 2004, {{ISBN|3-411-04275-3}}, pp. 17-19 (German)
*Hardt Krämer, Rolf Höwelmann, Ingo Klemisch: ''Analytische Geometrie und Lineare Akgebra''. Diesterweg, 1988, {{ISBN|3-425-05301-9}}, p. 298 (German)
==External links ==
*Florian Modler: [http://www.emath.de/Referate/Zusammenfassung-wichtiger-Formeln.pdf ''Vektorprodukte, Abstandsaufgaben, Lagebeziehungen, Winkelberechnung – Wann welche Formel?''], pp. 44-59 (German)
*A. J. Hobson: [https://archive.uea.ac.uk/jtm/8/Lec8p5.pdf ''“JUST THE MATHS” - UNIT NUMBER 8.5 - VECTORS 5 (Vector equations of straight lines)''], pp. 8-9
[[Category:Euclidean geometry]]
|