Distance between two parallel lines: Difference between revisions

Content deleted Content added
mNo edit summary
mNo edit summary
 
(30 intermediate revisions by 18 users not shown)
Line 1:
{{Short description|Problem in coordinate geometry}}
{{unreferenced|date=April 2013}}
{{redirect-distinguish|Distance between two lines|Distance between two skew lines}}
 
The '''[[distance]] between two [[Parallel (geometry)|parallel]] [[Line (geometry)|lines]]''' in the [[plane (geometry)|plane]] is the minimum distance between any two points.
:''This article considers two lines in a plane. For two lines not in the same plane, see [[Skew lines#Distance]].''
 
The '''distance between two straight lines''' in the [[plane (geometry)|plane]] is the minimum [[distance]] between any two points lying on the [Line (geometry)|lines]]. In case of intersecting lines, the distance between them is zero, because the minimum distance between them is zero (at the point of intersection); whereas in case of two [[Parallel (geometry)|parallel]] lines, it is the [[perpendicular]] distance from a [[Point (geometry)|point]] on one line to the other line.
 
== Formula and proof ==
Line 11 ⟶ 10:
:<math>y = mx+b_2\,,</math>
 
the distance between the two lines is the distance between the two interceptsintersection points of these lines with the perpendicular line
 
:<math>y = -x/m \, ,.</math>
 
This distance can be found by first solving the [[linear systems]]
 
:<math>\begin{cases}
Line 29 ⟶ 28:
\end{cases}</math>
 
to get the coordinates of the interceptintersection points. The solutions to the linear systems are the points
 
:<math>\left( x_1,y_1 \right)\ = \left( \frac{-b_1m}{m^2+1},\frac{b_1}{m^2+1} \right)\, ,</math>
Line 55 ⟶ 54:
 
==See also==
 
*[[Distance from a point to a line]]
 
*[[Skew lines#Distance]]
==References==
*''Abstand'' In: ''Schülerduden – Mathematik II''. Bibliographisches Institut & F. A. Brockhaus, 2004, {{ISBN|3-411-04275-3}}, pp. 17-19 (German)
*Hardt Krämer, Rolf Höwelmann, Ingo Klemisch: ''Analytische Geometrie und Lineare Akgebra''. Diesterweg, 1988, {{ISBN|3-425-05301-9}}, p. 298 (German)
 
==External links ==
*Florian Modler: [http://www.emath.de/Referate/Zusammenfassung-wichtiger-Formeln.pdf ''Vektorprodukte, Abstandsaufgaben, Lagebeziehungen, Winkelberechnung – Wann welche Formel?''], pp. 44-59 (German)
*A. J. Hobson: [https://archive.uea.ac.uk/jtm/8/Lec8p5.pdf ''“JUST THE MATHS” - UNIT NUMBER 8.5 - VECTORS 5 (Vector equations of straight lines)''], pp. 8-9
 
[[Category:Euclidean geometry]]
*[[Skew lines#Category:Distance]]