Content deleted Content added
Citation bot (talk | contribs) Add: url. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 36/2500 |
|||
(23 intermediate revisions by 11 users not shown) | |||
Line 1:
{{distinguish|Kolmogorov–Zurbenko filter}}
The '''Korkine–Zolotarev (KZ) lattice basis reduction algorithm''' is a [[lattice reduction]] [[algorithm]].▼
▲The '''Korkine–Zolotarev''' ('''KZ''') '''lattice basis reduction algorithm''' or '''Hermite–Korkine–Zolotarev''' ('''HKZ''') '''algorithm''' is a [[lattice reduction]] [[algorithm]].
For lattices in <math>\mathbb{R}^n</math> it yields a lattice basis with orthogonality defect at most <math>n^n</math>, unlike the <math>2^{n^2/2}</math> bound of the [[Lenstra–Lenstra–Lovász lattice basis reduction algorithm|LLL reduction]].<ref>https://sites.math.washington.edu/~rothvoss/lecturenotes/IntOpt-and-Lattices.pdf, pp. 18-19</ref> KZ has exponential complexity versus the polynomial complexity of the [[Lenstra–Lenstra–Lovász lattice basis reduction algorithm|LLL reduction]] algorithm, however it may still be preferred for solving multiple [[closest vector problem]]s (CVPs) in the same lattice, where it can be more efficient.
==History==
The definition of a KZ-reduced basis was given by
The '''block Korkine-Zolotarev''' ('''BKZ''') algorithm was introduced in 1987.<ref>{{Cite book|chapter-url=https://link.springer.com/chapter/10.1007/978-981-15-5191-8_15|doi = 10.1007/978-981-15-5191-8_15|chapter = A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge|title = International Symposium on Mathematics, Quantum Theory, and Cryptography|series = Mathematics for Industry|year = 2021|last1 = Yasuda|first1 = Masaya|volume = 33|pages = 189–207|isbn = 978-981-15-5190-1|s2cid = 226333525}}</ref>
==Definition==
Line 26 ⟶ 30:
:<math>\pi_i(\mathbf{x}) = \sum_{j \geq i} \frac{\langle\mathbf{x},\mathbf{b}^*_j\rangle}{\langle\mathbf{b}^*_j,\mathbf{b}^*_j\rangle} \mathbf{b}^*_j</math>
which project <math>\mathbf{x}</math> orthogonally onto the span of <math>\mathbf{b}^*_i, \cdots, \mathbf{b}^*_n</math>.
Then the basis <math>B</math> is KZ-reduced if the following holds:
# <math>\mathbf{b}^*_i</math> is the shortest nonzero vector in <math>\pi_i(\mathcal{L}(\mathbf{B}))</math>
# For all <math>j < i</math>, <math>\left|\mu_{i,j}\right| \leq 1/2</math>
Note that the first condition can be reformulated recursively as stating that <math>\mathbf{b}_1</math> is a shortest vector in the lattice, and <math>\{\pi_2(\mathbf{b}_2), \cdots \pi_2(\mathbf{b}_n)\}</math> is a KZ-reduced basis for the lattice <math>\pi_2(\mathcal{L}(\mathbf{B}))</math>.
Note that the second condition guarantees that the reduced basis is length-reduced (adding an integer multiple of one basis vector to another will not decrease its length); the same condition is used in the LLL reduction.▼
▲
==Notes==
Line 45 ⟶ 50:
|first2=G.|last2=Zolotareff
|title=Sur les formes quadratiques positives
|journal=Mathematische Annalen
|year=1877
|volume=11
|issue=2
|s2cid=121803621
|doi=10.1007/BF01442667
}}
Line 52 ⟶ 63:
|first2=Cong|last2=Ling
|title=Boosted KZ and LLL Algorithms
|journal=IEEE Transactions on Signal Processing
|year=2017
|volume=65
▲|url=https://arxiv.org/pdf/1703.03303.pdf
|issue=18
|pages=4784–4796
|doi=10.1109/TSP.2017.2708020
|arxiv=1703.03303
|bibcode=2017ITSP...65.4784L
|s2cid=16832357
}}
Line 59 ⟶ 77:
|title=On the KZ Reduction
|year=2018
|
* {{cite book|first1=Daniele|last1=Micciancio|
Line 66 ⟶ 83:
|title=Complexity of Lattice Problems
|year=2002
|pages=131–136
|
▲|pages=131-136}}
|isbn=978-1-4613-5293-8}}
* {{cite journal|first1=Wen|last1=Zhang|first2=Sanzheng|last2=Qiao|first3=Yimin|last3=Wei
|title=HKZ and Minkowski Reduction Algorithms for Lattice-Reduction-Aided MIMO Detection
|journal=IEEE Transactions on Signal Processing |year=2012
|volume=60 |issue=11 |page=5963 |doi=10.1109/TSP.2012.2210708 |bibcode=2012ITSP...60.5963Z |s2cid=5962834 |url=http://www.cas.mcmaster.ca/~qiao/publications/ZQW12a.pdf
}}
Line 78 ⟶ 96:
{{Number-theoretic algorithms}}
{{DEFAULTSORT:Korkine-Zolotarev lattice basis reduction algorithm}}
[[Category:Theory of cryptography]]
[[Category:Computational number theory]]
|