Content deleted Content added
m Fixed missing citation. |
|||
(14 intermediate revisions by 4 users not shown) | |||
Line 1:
{{short description|Method of analyzing large data sets}}
'''Multiway data analysis''' is a method of analyzing large data sets by representing
{{cite book
|editor1-last=Coppi|editor1-first=R.
Line 11 ⟶ 12:
==History==
The study of multiway data analysis was first formalized as the result of a conference held in 1988. The result of this conference was the first text specifically addressed to this field, Coppi and Bolasco's ''Multiway Data Analysis''.<ref name=
{{cite book
|editor1-last=Coppi|editor1-first=R.
|page=xv▼
|editor2-last=Bolasco|editor2-first=S.
|title=Applied Multiway Data Analysis▼
|title=Multiway Data Analysis
|volume=702▼
|series=Wiley Series in Probability and Statistics▼
|___location=Amsterdam
|first=Pieter M.|last=Kroonenberg▼
▲ |publisher=John Wiley & Sons
|isbn=9780444874108
▲ |year=2008
|isbn=9780470237991▼
}}</ref> At that time, the application areas for multiway analysis included [[statistics]], [[econometrics]] and [[psychometrics]]. In recent years, applications have expanded to include [[chemometrics]], [[agriculture]], [[social network analysis]] and the [[food industry]].<ref name=Bro1998>
{{cite thesis
Line 33:
== Composition of multiway data analysis ==
===Multiway data
Multiway data analysts use the term ''way'' to refer to
{{ ▲ |page=xv
▲ |title=Applied Multiway Data Analysis
▲ |volume=702
▲ |series=Wiley Series in Probability and Statistics
▲ |first=Pieter M.|last=Kroonenberg
|publisher=John Wiley & Sons
|year=2008
▲ |isbn=9780470237991
}}</ref>{{rp|xviii}}
In this sense, we can define the various ''ways'' of data to analyze:
* ''One
* ''Two-way data
* ''Three-way data
* ''Four-way data
* ''Five-way data
In general, a
===Multiway model===
Line 57 ⟶ 67:
}}</ref>
* [[Computer vision]] - TensorFaces<ref name=Vasilescu2002Tensorfaces>{{cite journal
|first=M.A.O. |last=Vasilescu
|first2=D. |last2=Terzopoulos
|url=http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf
|title=Multilinear Analysis of Image Ensembles: TensorFaces
|series=Lecture Notes in Computer Science 2350; (Presented at Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark)
|publisher=Springer, Berlin, Heidelberg
|doi=10.1007/3-540-47969-4_30
|isbn=978-3-540-43745-1
|year=2002
}}</ref><ref name="MPCA-MICA2005">M.A.O. Vasilescu, D. Terzopoulos (2005) [http://www.media.mit.edu/~maov/mica/mica05.pdf "Multilinear Independent Component Analysis"], "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553."</ref> and Human motion signatures<ref name="Vasilescu2002b">M.A.O. Vasilescu (2002) [http://www.media.mit.edu/~maov/motionsignatures/hms_icpr02_corrected.pdf "Human Motion Signatures: Analysis, Synthesis, Recognition," Proceedings of International Conference on Pattern Recognition (ICPR 2002), Vol. 3, Quebec City, Canada, Aug, 2002, 456–460.]</ref> analyzes facial images and human joint angle data organizes in a multiway array. The multiway data analysis is employed to compute a set of causal factor representations.<ref name="Vasilescu2002tensorfaces">{{cite conference
|first=M.A.O. |last=Vasilescu
|first2=Eric |last2=Kim
|first3=Xiao |last3=Zeng
|url=http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf
|title="CausalX: Causal eXplanations and Block Multilinear Factor Analysis",
|conference=In the Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR 2020)
|___location=Milan, Italy
|pages=10736-10743
|year=2021
}}</ref>
* [[Electroanalytical chemistry]]
* [[Neuroscience]]
|