Content deleted Content added
m ISBNs (Build J/) |
Citation bot (talk | contribs) Alter: isbn. Add: publisher, chapter-url. Removed or converted URL. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Abductive | Category:Approximation theory | #UCB_Category 25/32 |
||
(18 intermediate revisions by 16 users not shown) | |||
Line 1:
{{Short description|Mathematical method}}
In [[mathematics]],
==Functional analysis==
{{See also|Fourier series|Generalized Fourier series}}
A generalization to approximation of a data set is the approximation of a function by a sum of other functions, usually an [[orthogonal functions|orthogonal set]]:<ref name=Lanczos>
{{cite book |title=Applied analysis |author=Cornelius Lanczos
</ref>
:<math>f(x) \approx f_n (x) = a_1 \phi _1 (x) + a_2 \phi _2(x) + \cdots + a_n \phi _n (x), \ </math>
with the set of functions {<math>\ \phi _j (x) </math>} an [[Orthonormal_set#Real-valued_functions|orthonormal set]] over the interval of interest, {{nowrap|say [a, b]}}: see also [[Fejér's theorem]]. The coefficients {<math>\ a_j </math>} are selected to make the magnitude of the difference
{{cite book |title=Fourier analysis and its application |page =69 |chapter=Equation 3.14
</ref>
Line 20:
:<math> \|g\| = \left(\int_a^b g^*(x)g(x) \, dx \right)^{1/2} </math>
where the ‘*’ denotes [[complex conjugate]] in the case of complex functions. The extension of Pythagoras' theorem in this manner leads to [[function space]]s and the notion of [[Lebesgue measure]], an idea of “space” more general than the original basis of Euclidean geometry. The {{nowrap|{ <math>\phi_j (x)\ </math> } }} satisfy [[Orthogonal#Orthogonal_functions|orthonormality relations]]:<ref name=Folland2>
{{cite book |title=Fourier Analysis and Its Applications|page =69
</ref>
Line 29:
the ''n''-dimensional [[Pythagorean theorem]]:<ref name=Wood>
{{cite book |title=Statistical methods: the geometric approach |author= David J. Saville, Graham R. Wood |chapter=§2.5 Sum of squares |page=30 |chapter-url=
</ref>
:<math>\|f_n\|^2 = |a_1|^2 + |a_2|^2 + \cdots + |a_n|^2. \, </math>
The coefficients {''a''<sub>''j''</sub>
:<math>a_j = \int_a^b \phi _j^* (x)f (x) \, dx. </math>
Line 40:
The generalization of the ''n''-dimensional Pythagorean theorem to ''infinite-dimensional '' [[real number|real]] inner product spaces is known as [[Parseval's identity]] or Parseval's equation.<ref name=Folland3>
{{cite book |title=cited work |page =77 |chapter=Equation 3.22
</ref> Particular examples of such a representation of a function are the [[Fourier series]] and the [[generalized Fourier series]].
==Further discussion==
===Using linear algebra===
It follows that one can find a "best" approximation of another function by minimizing the area between two functions, a continuous function <math>f</math> on <math>[a,b]</math> and a function <math>g\in W</math> where <math>W</math> is a subspace of <math>C[a,b]</math>:
:<math>\text{Area} = \int_a^b \left\vert f(x) - g(x)\right\vert \, dx,</math>
all within the subspace <math>W</math>. Due to the frequent difficulty of evaluating integrands involving absolute value, one can instead define
:<math>\int_a^b [ f(x) - g(x) ] ^2\, dx</math>
as an adequate criterion for obtaining the least squares approximation, function <math>g</math>, of <math>f</math> with respect to the inner product space <math>W</math>.
As such, <math>\lVert f-g \rVert ^2</math> or, equivalently, <math>\lVert f-g \rVert</math>, can thus be written in vector form:
:<math>\int_a^b [ f(x)-g(x) ]^2\, dx = \left\langle f-g , f-g\right\rangle = \lVert f-g\rVert^2.</math>
In other words, the least squares approximation of <math>f</math> is the function <math>g\in \text{ subspace } W</math> closest to <math>f</math> in terms of the inner product <math>\left \langle f,g \right \rangle</math>. Furthermore, this can be applied with a theorem:
:Let <math>f</math> be continuous on <math>[ a,b ]</math>, and let <math>W</math> be a finite-dimensional subspace of <math>C[a,b]</math>. The least squares approximating function of <math>f</math> with respect to <math>W</math> is given by
::<math>g = \left \langle f,\vec w_1 \right \rangle \vec w_1 + \left \langle f,\vec w_2 \right \rangle \vec w_2 + \cdots + \left \langle f,\vec w_n \right \rangle \vec w_n,</math>
:where <math>B = \{\vec w_1 , \vec w_2 , \dots , \vec w_n \}</math> is an orthonormal basis for <math>W</math>.
==References==
|