Content deleted Content added
No edit summary Tag: Reverted |
DividedFrame (talk | contribs) m →top: Style |
||
(14 intermediate revisions by 7 users not shown) | |||
Line 1:
'''Design
<ref name="edo2021">{{Cite book|url=http://flowlab.groups.et.byu.net/mdobook.pdf|title=Engineering Design Optimization|last1=Martins|first1=Joaquim R. R. A.|last2=Ning|first2=Andrew|date=2021-10-01|publisher=Cambridge University Press|isbn=978-1108833417|language=en}}</ref>
<ref name="pyp2017">{{Cite book|url=http://principlesofoptimaldesign.org/|title=Principles of Optimal Design: Modeling and Computation|last1=Papalambros|first1=Panos Y.|last2=Wilde|first2=Douglass J.|date=2017-01-31|publisher=Cambridge University Press|isbn=9781316867457|language=en}}</ref>
Line 8:
# Feasibility: Values for set of variables that satisfies all constraints and minimizes/maximizes Objective.
== Design
{{Main|
The formal mathematical ([[Canonical form|standard form]]) statement of the design
<math>\begin{align}
Line 52:
== Application ==
Design
'''Optimization Checklist''' <ref name="pyp2017" />
Line 67:
A detailed and rigorous description of the stages and practical applications with examples can be found in the book [http://www.cambridge.org/gh/academic/subjects/engineering/control-systems-and-optimization/principles-optimal-design-modeling-and-computation-3rd-edition?format=HB&isbn=9781107132672#C3r6r6aLRe2bUoef.97 Principles of Optimal Design].
Practical design
One modern application of design optimization is structural design optimization (SDO) is in building and construction sector. SDO emphasizes automating and optimizing structural designs and dimensions to satisfy a variety of performance objectives. These advancements aim to optimize the configuration and dimensions of structures to optimize augmenting strength, minimize material usage, reduce costs, enhance energy efficiency, improve sustainability, and optimize several other performance criteria. Concurrently, structural design automation endeavors to streamline the design process, mitigate human errors, and enhance productivity through computer-based tools and optimization algorithms. Prominent practices and technologies in this ___domain include the parametric design, generative design, building information modelling (BIM) technology, machine learning (ML), and artificial intelligence (AI), as well as integrating finite element analysis (FEA) with simulation tools.<ref>Towards BIM-Based Sustainable Structural Design Optimization: A Systematic Review and Industry Perspective. Sustainability 2023, 15, 15117. https://doi.org/10.3390/su152015117</ref>
== Journals ==
Line 124 ⟶ 126:
=== Structural Topology Optimization ===
{{refbegin}}
*{{cite journal |title=Generating optimal topologies in structural design using a homogenization method |journal=Computer Methods in Applied Mechanics and Engineering |volume=71 |issue=2 |pages=197–224 |date=1988-11-01 |doi=10.1016/0045-7825(88)90086-2 |issn=0045-7825 |url= | last1 = Bendsøe | first1 = Martin Philip | last2 = Kikuchi | first2 = Noboru|hdl=2027.42/27079 |hdl-access=free }}
*{{cite book |first=Martin P. |last=Bendsøe |title=Optimization of structural topology, shape, and material |publisher=Springer |date=1995 |isbn=3540590579 }}
*{{cite book |first=Hassani |last=Behrooz |title=Homogenization and Structural Topology Optimization : Theory, Practice and Software |publisher=Springer |date=1999 |isbn=9781447108917 |oclc=853262659 }}
*{{cite book |
*{{cite book |editor-last=Rozvany |editor-first=G.I.N. |editor-last2=Lewiński |editor-first2=T. |title=Topology optimization in structural and continuum mechanics |publisher=Springer |date=2014 |isbn=9783709116432 |oclc=859524179 |url=https://
{{refend}}
|