Content deleted Content added
m →Applications of image segmentation: cleanup |
m link remote sensing |
||
(9 intermediate revisions by 7 users not shown) | |||
Line 1:
The [[image segmentation]] problem is concerned with partitioning an image into multiple regions according to some homogeneity criterion. This article is primarily concerned with graph theoretic approaches to image segmentation applying [[graph partitioning]] via [[minimum cut]] or [[maximum cut]]. '''Segmentation-based object categorization''' can be viewed as a specific case of [[spectral clustering]] applied to image segmentation.
<!-- Unsourced image removed: [[Image:aenep11.png|right|thumb|Figure 1: Input image.]] -->
<!-- Unsourced image removed: [[Image:aenep12.png|right|thumb|Figure 2: First partition.]] -->
Line 18:
** Automatic segmentation of MRI images for identification of cancerous regions.
* '''Mapping and measurement'''
** Automatic analysis of [[remote sensing]] data from satellites to identify and measure regions of interest.
* '''Transportation'''
** Partition a transportation network makes it possible to identify regions characterized by homogeneous traffic states.<ref>{{Cite journal|
==Segmentation using normalized cuts==
Line 71:
Solving a standard eigenvalue problem for all eigenvectors (using the [[QR algorithm]], for instance) takes <math>O(n^3)</math> time. This is impractical for image segmentation applications where <math>n</math> is the number of pixels in the image.
Since only one eigenvector, corresponding to the second smallest generalized eigenvalue, is used by the
For high-resolution images, the second eigenvalue is often [[ill-conditioned]], leading to slow convergence of iterative eigenvalue solvers, such as the [[Lanczos algorithm]]. [[Preconditioner#Preconditioning for eigenvalue problems|Preconditioning]] is a key technology accelerating the convergence, e.g., in the matrix-free [[LOBPCG]] method. Computing the eigenvector using an optimally preconditioned matrix-free method takes <math>O(n)</math> time, which is the optimal complexity, since the eigenvector has <math>n</math> components.
===Software Implementations===
[[scikit-learn]]<ref>{{Cite web|url=https://scikit-learn.org/stable/modules/clustering.html#spectral-clustering|title=Spectral Clustering — scikit-learn documentation}}</ref> uses [[LOBPCG]] from [[SciPy]] with [[Multigrid method#Algebraic multigrid (AMG)|algebraic multigrid preconditioning]] for solving the [[eigenvalue]] problem for the [[graph Laplacian]] to perform [[image segmentation]] via spectral [[graph partitioning]] as first proposed in <ref>{{Cite conference | url = https://www.researchgate.net/publication/343531874 | title = Modern preconditioned eigensolvers for spectral image segmentation and graph bisection | conference = Clustering Large Data Sets; Third IEEE International Conference on Data Mining (ICDM 2003) Melbourne, Florida: IEEE Computer Society| editor = Boley| editor2 = Dhillon| editor3 = Ghosh| editor4 = Kogan | pages = 59–62| year = 2003| last1 = Knyazev| first1 = Andrew V.}}</ref> and actually tested in <ref>{{Cite conference | url = https://www.researchgate.net/publication/354448354 | title = Multiscale Spectral Image Segmentation Multiscale preconditioning for computing eigenvalues of graph Laplacians in image segmentation | conference = Fast Manifold Learning Workshop, WM Williamburg, VA| year = 2006| last1 = Knyazev| first1 = Andrew V. | doi=10.13140/RG.2.2.35280.02565}}</ref> and.<ref>{{Cite conference | url = https://www.researchgate.net/publication/343531874 | title = Multiscale Spectral Graph Partitioning and Image Segmentation | conference = Workshop on Algorithms for Modern Massive Datasets Stanford University and Yahoo! Research| year = 2006| last1 = Knyazev| first1 = Andrew V.}}</ref>
==OBJ CUT==
Line 106 ⟶ 109:
==References==
{{reflist|32em}}
[[Category:Object recognition and categorization]]
|