Content deleted Content added
No edit summary |
m →Solution concepts: Typo fixing, replaced: can seen → can be seen |
||
(37 intermediate revisions by 16 users not shown) | |||
Line 1:
'''Multi-objective linear programming''' is a subarea of [[mathematical optimization]]. A multiple objective linear program (MOLP) is a [[linear program]] with more than one
▲'''Multi-objective linear programming''' is a subarea of [[mathematical optimization]]. A multiple objective linear program (MOLP) is a [[linear program]] with more than one linear objective functions. An MOLP is a special case of a [[vector linear program]]. Multi-objection linear programming is also a subarea of [[Multi-objective optimization]].
== Problem formulation ==
In mathematical terms, a MOLP can be written as:
:<math>\
where <math>B</math> is an <math>(m\times n)</math> matrix, <math>P</math> is a <math>(q\times n)</math> matrix, <math>a</math> is an <math>m</math>-dimensional vector with components in <math>\mathbb{R} \cup \{-\infty\}</math>, <math>b</math> is an <math>m</math>-dimensional vector with components in <math>\mathbb{R} \cup \{+\infty\}</math>, <math>
== Solution concepts ==
A feasible point <math>x</math> is called ''efficient'' if there is no feasible point <math>y</math> with <math>Px \leq Py</math>, <math>Px \neq Py</math>, where <math>\leq</math>
Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points
Efficient points are frequently called ''efficient solutions''. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP.<ref name="Ehrgott2015">{{cite
More recent references consider ''outcome set based'' solution concepts<ref name="HeydeLöhne2011">{{cite journal|last1=Heyde|first1=Frank|last2=Löhne|first2=Andreas|title=Solution concepts in vector optimization: a fresh look at an old story|journal=Optimization|volume=60|issue=12|year=2011|pages=1421–1440|issn=0233-1934|doi=10.1080/02331931003665108|s2cid=54519405|url=http://webdoc.sub.gwdg.de/ebook/serien/e/reports_Halle-Wittenberg_math/08-19report.pdf}}</ref> and corresponding algorithms.<ref name="DauerSaleh1990">{{cite journal|last1=Dauer|first1=J.P.|last2=Saleh|first2=O.A.|title=Constructing the set of efficient objective values in multiple objective linear programs|journal=European Journal of Operational Research|volume=46|issue=3|year=1990|pages=358–365|issn=
A finite set <math>\bar S</math> of efficient points is called ''solution'' to MOLP if
<math>\
If MOLP is not bounded, a solution consists not only of points but of points and directions <ref name="Löhne2011" /><ref name="LöhneWeißing2017" />
== Solution methods ==
Multiobjective variants of the [[simplex algorithm]] are used to compute decision set based solutions<ref name="EckerKouada1978" /><ref name="EckerHegner1980" /><ref name="ArmandMalivert1991">{{cite journal|last1=Armand|first1=P.|last2=Malivert|first2=C.|title=Determination of the efficient set in multiobjective linear programming|journal=Journal of Optimization Theory and Applications|volume=70|issue=3|year=1991|pages=467–489|issn=0022-3239|doi=10.1007/BF00941298|citeseerx=10.1.1.161.9730|s2cid=18407847}}</ref> and objective set based solutions.<ref name="RudloffUlus2016">{{cite journal|last1=Rudloff|first1=Birgit|last2=Ulus|first2=Firdevs|last3=Vanderbei|first3=Robert|title=A parametric simplex algorithm for linear vector optimization problems|journal=Mathematical Programming|volume=163|issue=1–2|year=2016|pages=213–242|issn=0025-5610|doi=10.1007/s10107-016-1061-z|arxiv=1507.01895|s2cid=13844342}}</ref>
Objective set based solutions can be obtained by [[Benson's algorithm
== Related problem classes ==
Multiobjective linear programming is equivalent to [[Polyhedral combinatorics|polyhedral]] projection.<ref name="LöhneWeißing2016">{{cite journal|last1=Löhne|first1=Andreas|last2=Weißing|first2=Benjamin|title=Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming|journal=Mathematical Methods of Operations Research|volume=84|issue=2|year=2016|pages=411–426|issn=1432-2994|doi=10.1007/s00186-016-0554-0|arxiv=1507.00228|s2cid=26137201}}</ref>
== References ==
{{Reflist}}
[[Category:
|