Panjer recursion: Difference between revisions

Content deleted Content added
No edit summary
Open access status updates in citations with OAbot #oabot
 
(39 intermediate revisions by 22 users not shown)
Line 1:
The '''Panjer recursion''' is an [[algorithm]] to compute the [[probability distribution]] approximation of a compound [[random variable]]
: <math>S = \sum_{i=1}^N X_i.\,</math>.
where both <math>N\,</math> and <math>X_i\,</math> are [[random variable]]s and of special types. In more general cases the distribution of ''S'' is a [[compound distribution]]. The recursion for the special cases considered was introduced in a paper <ref>{{cite journal|last=Panjer|first=Harry H.|year=1981|title=Recursive evaluation of a family of compound distributions.| journal=ASTIN Bulletin|volume=12|issue=1|pages=22–26|publisher=[[International Actuarial Association]]|url=http://www.casact.org/library/astin/vol12no1/22.pdf|doi=10.1017/S0515036100006796|s2cid=15372040 }}</ref> by [[Harry Panjer]] ([[Distinguished Emeritus Professor]], [[University of Waterloo]]<ref>[http://www.actuaries.org/COUNCIL/Documents/CV_Panjer.pdf CV], actuaries.org; [https://math.uwaterloo.ca/statistics-and-actuarial-science/about/people/harry-panjer Staff page], math.uwaterloo.ca</ref>). It is heavily used in [[actuarial science]] (see also [[systemic risk]]).
where both <math>N\,</math> and <math>X_i\,</math> are [[stochastic]] and of a special type.
It was introduced in a paper of [[Harry Panjer]] <ref> {{cite journal|last=Panjer|first=Harry H.|year=1981|title=Recursive evaluation of a family of compound distributions.| journal=ASTIN Bulletin|volume=12|issue=1|pages=22–26|publisher=[[International Actuarial Association]]|url=http://www.casact.org/library/astin/vol12no1/22.pdf|format=PDF}}</ref>. It is heavily used in [[actuarial science]].
 
== Preliminaries ==
Line 11 ⟶ 10:
 
: <math>f_k = P[X_i = hk].\,</math>
 
In actuarial practice, <math>X_i\,</math> is obtained by discretisation of the claim density function (upper, lower...).
 
=== Claim number distribution ===
<math>N\,</math> is the "claim number distribution", i.e. <math>N \in \mathbb{N}_0\,</math>.
 
Furthermore,The <math>number of claims ''N\'' is a [[random variable]],</math> which is said to have a "claim number distribution", and which can take values 0, 1, 2, .... etc.. For the "Panjer recursion", the [[probability distribution]] of ''N'' has to be a member of the '''Panjer class'''., Theotherwise Panjerknown as the [[(a,b,0) class of distributions]]. This class consists of all counting random variables which fulfill the following relation:
:<math>P[N=k] = p_k= \left(a + \frac{b}{k} \right) \cdot p_{k-1},~~k \ge 1.\, </math>
for some <math>a\,</math> and <math>b\,</math> which fulfill <math>a+b \ge 0\,</math>. The initial value <math>p_0\,</math> is determined such that <math>\sum_{k=0}^\infty p_k = 1.\,</math>
the value <math>p_0\,</math> is determined such that <math>\sum_{k=0}^\infty p_k = 1.\,</math>
 
The Panjer recursion makes use of this iterative relationship to specify a recursive way of constructing the probability distribution of ''S''. In the following <math>W_N(x)\,</math> denotes the [[probability generating function]] of ''N'': for this see the table in [[(a,b,0) class of distributions]].
Sundt proved in the paper <ref>{{cite journal|author=B. Sundt and W. S. Jewell|title=Further results on recursive evaluation of compound distributions|journal=ASTIN Bulletin|volume=12|issue=1|year=1981|pages=27–39|publisher=[[International Actuarial Association]]|url=http://www.casact.org/library/astin/vol12no1/27.pdf|format=PDF}} </ref> that only the [[binomial distribution]], the [[Poisson distribution]] and the [[negative binomial distribution]] belong to the Panjer class, depending on the sign of <math>a\,</math>. They have the parameters and values as described in the following table. <math>W_N(x)\,</math> denotes the [[probability generating function]].
 
In the case of claim number is known, please note the ''De Pril'' algorithm.<ref>Vose Software Risk Wiki: http://www.vosesoftware.com/riskwiki/Aggregatemodeling-DePrilsrecursivemethod.php</ref> This algorithm is suitable to compute the sum distribution of <math>n</math> discrete [[random variables]].<ref>{{Cite journal | doi = 10.1080/03461238.1988.10413837| title = Improved approximations for the aggregate claims distribution of a life insurance portfolio| journal = Scandinavian Actuarial Journal| volume = 1988| issue = 1–3| pages = 61–68| year = 1988| last1 = De Pril | first1 = N. }}</ref>
{| class="prettytable"
! class="hintergrundfarbe6" |Distribution
! class="hintergrundfarbe6" |<math> P[N=k]\, </math>
! class="hintergrundfarbe6" |<math> a\, </math>
! class="hintergrundfarbe6" |<math> b \,</math>
! class="hintergrundfarbe6" |<math> p_0\, </math>
! class="hintergrundfarbe6" |<math> W_N(x)\, </math>
! class="hintergrundfarbe6" |<math> E[N]\, </math>
! class="hintergrundfarbe6" |<math> Var(N)\, </math>
|-
|[[Binomial distribution|Binomial]]
|<math>\binom{n}{k} p^k (1-p)^{n-k} \, </math>
|<math> \frac{-p}{1-p} </math>
|<math> \frac{p(n+1)}{1-p} </math>
|<math> (1-p)^n\, </math>
|<math> (px+(1-p))^{n} \,</math>
|<math> np\, </math>
|<math> np(1-p) \,</math>
|-
|[[Poisson distribution|Poisson]]
|<math> e^{-\lambda}\frac{ \lambda^k}{k!}\, </math>
|<math> 0\, </math>
|<math> \lambda \,</math>
|<math> e^{- \lambda}\, </math>
|<math> e^{\lambda(s-1)} \,</math>
|<math> \lambda\, </math>
|<math> \lambda \,</math>
|-
|[[Negative binomial distribution|negative binomial]]
|<math> \frac{\Gamma(r+k)}{k!\,\Gamma(r)}\,p^r\,(1-p)^k \,</math>
|<math> 1-p\, </math>
|<math> (1-p)(r-1)\, </math>
|<math> p^r \,</math>
|<math> \left( \frac{p}{1 - x(1-p)}\right) ^r \,</math>
|<math> \frac{r(1-p)}{p} \, </math>
|<math> \frac{r(1-p)}{p^2} \,</math>
|-
|}
 
== Recursion ==
The algorithm now gives a recursion to compute the <math>g_k =P[S = hk] \,</math>.
 
The starting value is <math>g_0 = W_N(f_0)\,</math> with the special cases
 
:<math>g_0=p_0\cdot \exp(f_0 b) \quad \text{ if } \quad a = 0,\,</math>
 
and
 
:<math>g_0=\frac{p_0}{(1-f_0a)^{1+b/a}} \quad \text{ for } \quad a \ne 0,\,</math>
 
and proceed with
Line 80 ⟶ 42:
 
[[Image:Expba07.jpg]]
 
As observed, an issue may arise at the initialization of the recursion. Guégan and Hassani (2009) have proposed a solution to deal with that issue
.<ref>{{cite journal
|last1 = Guégan |first1 = D.
|last2 = Hassani |first2 = B.K.
|title = A modified Panjer algorithm for operational risk capital calculations
|year = 2009
|journal = Journal of Operational Risk
|volume = 4
|issue = 4
|pages = 53–72
|doi = 10.21314/JOP.2009.068
|s2cid = 4992848
|citeseerx = 10.1.1.413.5632}}</ref>
 
== References ==
Line 85 ⟶ 61:
 
==External links==
*[http://www.vosesoftware.com/ModelRiskHelpriskwiki/index.htm#Aggregate_distributions/Aggregate_modeling_Aggregatemodeling-_Panjer_s_recursive_methodPanjersrecursivemethod.htmphp Panjer recursion and the distributions it can be used with]
 
[[Category:Actuarial science]]
[[Category:ProbabilityCompound theoryprobability distributions]]
[[Category:SystemsTheory of probability distributions]]
 
[[de:Panjer-Algorithmus]]
[[pl:Wzór Panjera]]