Alpha recursion theory: Difference between revisions

Content deleted Content added
moved previous edit slightly for better ease of reading (and added link to partial functions webpage)
 
(3 intermediate revisions by the same user not shown)
Line 1:
In [[recursion theory]], '''α recursion theory''' is a generalisation of [[recursion theory]] to subsets of [[admissible ordinal]]s <math>\alpha</math>. An admissible set is closed under <math>\Sigma_1(L_\alpha)</math> functions, where <math>L_\xi</math> denotes a rank of Godel's [[constructible hierarchy]]. <math>\alpha</math> is an admissible ordinal if <math>L_{\alpha}</math> is a model of [[Kripke–Platek set theory]]. In what follows <math>\alpha</math> is considered to be fixed.
 
==Definitions==
The objects of study in <math>\alpha</math> recursion are subsets of <math>\alpha</math>. These sets are said to have some properties:
*A set <math>A\subseteq\alpha</math> is said to be <math>\alpha</math>-recursively-enumerable if it is <math> \Sigma_1</math> definable over <math>L_\alpha</math>, possibly with parameters from <math>L_\alpha</math> in the definition.<ref>P. Koepke, B. Seyfferth, [https://www.math.uni-bonn.de/people/koepke/Preprints/Ordinal_machines_and_admissible_recursion_theory.pdf Ordinal machines and admissible recursion theory (preprint)] (2009, p.315). Accessed October 12, 2021</ref>
Line 27 ⟶ 28:
We say ''A'' is regular if <math>\forall \beta \in \alpha: A \cap \beta \in L_\alpha</math> or in other words if every initial portion of ''A'' is α-finite.
 
==ResultsWork in α recursion==
 
Shore's splitting theorem: Let A be <math>\alpha</math> recursively enumerable and regular. There exist <math>\alpha</math> recursively enumerable <math>B_0,B_1</math> such that <math>A=B_0 \cup B_1 \wedge B_0 \cap B_1 = \varnothing \wedge A \not\le_\alpha B_i (i<2).</math>
Line 35 ⟶ 36:
Barwise has proved that the sets <math>\Sigma_1</math>-definable on <math>L_{\alpha^+}</math> are exactly the sets <math>\Pi_1^1</math>-definable on <math>L_\alpha</math>, where <math>\alpha^+</math> denotes the next admissible ordinal above <math>\alpha</math>, and <math>\Sigma</math> is from the [[Levy hierarchy]].<ref>T. Arai, [https://www.sciencedirect.com/science/article/pii/S0168007203000204 Proof theory for theories of ordinals - I: recursively Mahlo ordinals] (1998). p.2</ref>
 
There is a generalization of [[Computability in the limit|limit computability]] to partial <math>\alpha\to\alpha</math> functions.<math>\alpha</math>.<ref>S. G. Simpson, "Degree Theory on Admissible Ordinals", pp.170--171. Appearing in J. Fenstad, P. Hinman, ''Generalized Recursion Theory: Proceedings of the 1972 Oslo Symposium'' (1974), ISBN 0 7204 22760.</ref>
 
A computational interpretation of <math>\alpha</math>-recursion exists, using "<math>\alpha</math>-Turing machines" with a two-symbol tape of length <math>\alpha</math>, that at limit computation steps take the [[limit inferior]] of cell contents, state, and head position. For admissible <math>\alpha</math>, a set <math>A\subseteq\alpha</math> is <math>\alpha</math>-recursive iff it is computable by an <math>\alpha</math>-Turing machine, and <math>A</math> is <math>\alpha</math>-recursively-enumerable iff <math>A</math> is the range of a function computable by an <math>\alpha</math>-Turing machine. <ref>P. Koepke, B. Seyfferth, "[https://www.math.uni-bonn.de/people/koepke/Preprints/Ordinal_machines_and_admissible_recursion_theory.pdf Ordinal machines and admissible recursion theory]". Annals of Pure and Applied Logic vol. 160 (2009), pp.310--318.</ref>
 
A problem in α-recursion theory which is open (as of 2019) is the embedding conjecture for admissible ordinals, which is whether for all admissible <math>\alpha</math>, the automorphisms of the <math>\alpha</math>-enumeration degrees embed into the automorphisms of the <math>\alpha</math>-enumeration degrees.<ref>D. Natingga, ''Embedding Theorem for the automorphism group of the α-enumeration degrees'' (p.155), PhD thesis, 2019.</ref>
 
==Relationship to analysis==