Extended discrete element method: Difference between revisions

Content deleted Content added
Monurin (talk | contribs)
#suggestededit-add-desc 1.0
Tags: Mobile edit Mobile app edit Android app edit
 
(One intermediate revision by one other user not shown)
Line 1:
{{Short description|Granular material interaction simulation technique}}
[[File:Internal temperature distribution in a particle.png|thumb|An internal temperature distribution for a spherical particle versus radius and time under a time-varying [[heat flux]].]]
 
Line 454 ⟶ 455:
| pages=2395–2410
| doi=10.1016/s0009-2509(02)00140-9
}}</ref> describe discrete particle-continuum fluid modelling of gas-solid fluidised beds. Further applications of XDEM include thermal conversion of biomass on a backward and forward acting grate. Heat transfer in thermal/reacting particulate systems was also solved and investigated, as comprehensively reviewed by Peng et al.<ref name="Peng">{{cite journal |last1=Peng |first1=Z. |last2=Doroodchi |first2=E. |last3=Moghtaderi |first3=B. |date=2020 |title=Heat transfer modelling in Discrete Element Method (DEM)-based simulations of thermal processes: Theory and model development |journal=Progress in Energy and Combustion Science |volume=79,100847 |page=100847 |doi=10.1016/j.pecs.2020.100847|s2cid=218967044 }}</ref> The [[deformation (engineering)|deformation]] of a conveyor belt due to impacting [[granular material]] that is discharged over a chute represents an application in the field of [[Stress (mechanicalmechanics)|stress]]/[[Deformation (mechanics)|strain]] analysis.
 
{|