Content deleted Content added
put all the names in the same paragraph |
Citation bot (talk | contribs) Add: bibcode, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by LeapTorchGear | Category:Integer sequences | #UCB_Category 203/220 |
||
(48 intermediate revisions by 27 users not shown) | |||
Line 1:
In [[number theory]], a '''multiplicative partition''' or '''unordered factorization''' of an integer
==Examples==
*The number 20 has four multiplicative partitions: 2 × 2 × 5, 2 × 10, 4 × 5, and 20.
*3 × 3 × 3 × 3, 3 × 3 × 9, 3 × 27, 9 × 9, and 81 are the five multiplicative
*The number 30 has five multiplicative partitions: 2 × 3 × 5 = 2 × 15 = 6 × 5 = 3 × 10 = 30.
*In general, the number of ==Application==
{{harvtxt|Hughes|Shallit|1983}} describe an application of multiplicative partitions in classifying integers with a given number of divisors. For example, the integers with exactly 12 divisors take the forms
of the integer
:<math>\prod p_i^{t_i-1},</math>
where each
==Bounds on the number of partitions==
{{harvtxt|Oppenheim|1926}} credits {{harvtxt|
The sequence of numbers
:1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, ... {{OEIS|id=A001055}}.▼
Oppenheim also claimed an upper bound on ''a<sub>n</sub>'', of the form▼
▲
:<math>a_n\le n\left(\exp\frac{\log n\log\log\log n}{\log\log n}\right)^{-2+o(1)},</math>▼
but as {{harvtxt|Canfield|Erdős|Pomerance|1983}} showed, this bound is erroneous and the true bound is▼
:<math>a_n\le n\left(\exp\frac{\log n\log\log\log n}{\log\log n}\right)^{-1+o(1)}.</math>▼
▲
▲but as {{harvtxt|Canfield|Erdős|Pomerance|1983}} showed, this bound is erroneous and the true bound is{{r|cep}}
▲
Both of these bounds are not far from linear in <math>n</math>: they are of the form <math>n^{1-o(1)}</math>.
However, the typical value of <math>a_n</math> is much smaller: the average value of <math>a_n</math>, averaged over an interval <math>x\le n\le x+N</math>, is
<math display=block>\bar a = \exp\left(\frac{4\sqrt{\log N}}{\sqrt{2e}\log\log N}\bigl(1+o(1)\bigr)\right),</math>
a bound that is of the form <math>n^{o(1)}</math>.{{r|lms}}
==Additional results==
{{harvtxt|Canfield|Erdős|Pomerance|1983}} observe, and {{harvtxt|Luca|Mukhopadhyay|Srinivas|2010}} prove, that most numbers cannot arise as the number <math>a_n</math> of multiplicative partitions of some <math>n</math>: the number of values less than <math>N</math> which arise in this way is <math>N^{O(\log\log\log N/\log\log N)}</math>.{{r|cep|lms}} Additionally, Luca et al. show that most values of <math>n</math> are not multiples of <math>a_n</math>: the number of values <math>n\le N</math> such that <math>a_n</math> divides <math>n</math> is <math>O(N/\log^{1+o(1)} N)</math>.{{r|lms}}
==See also==
*[[
*[[
==References==
{{reflist|refs=
<ref name=a>{{citation|first=G.|last=Andrews|authorlink=George E. Andrews|title=The Theory of Partitions|year=1976|publisher=Addison-Wesley}}, chapter 12</ref>
<ref name=lms>{{citation
*{{citation|first=A.|last=Oppenheim|title=On an arithmetic function|journal=[[Journal of the London Mathematical Society]]|volume=1|issue=4|pages=205–211|year=1926|url=http://jlms.oxfordjournals.org/cgi/reprint/s1-1/4/205}}.▼
| last1 = Luca | first1 = Florian
| last2 = Mukhopadhyay | first2 = Anirban
| last3 = Srinivas | first3 = Kotyada
| doi = 10.4064/aa142-1-3
| issue = 1
| journal = [[Acta Arithmetica]]
| mr = 2601047
| pages = 41–50
| title = Some results on Oppenheim's 'factorisatio numerorum' function
| volume = 142
| year = 2010| doi-access = free
| bibcode = 2010AcAri.142...41L
}}</ref>
<ref name=m>{{citation|doi=10.1112/plms/s2-22.1.404|first=P. A.|last=MacMahon|authorlink=Percy Alexander MacMahon|title=Dirichlet series and the theory of partitions|journal=[[London Mathematical Society#Publications|Proceedings of the London Mathematical Society]]|volume=22|year=1923|pages=404–411}}</ref>
▲
}}
==Further reading==
*{{citation |first1=A. |last1=Knopfmacher |first2=M. E. |last2=Mays |year=2005 |title=A survey of factorization counting functions |journal=International Journal of Number Theory |volume=1 |issue=4 |doi=10.1142/S1793042105000315 |pages=563–581 |url=http://math.wvu.edu/~mays/Papers/apf7.pdf}}
==External links==
*{{MathWorld|title=Unordered Factorization|urlname=UnorderedFactorization|mode=cs2}}
[[Category:Number theory]]
[[Category:Integer sequences]]
|