Continuum function: Difference between revisions

Content deleted Content added
tag as unref
OAbot (talk | contribs)
m Open access bot: arxiv updated in citation with #oabot.
 
(One intermediate revision by one other user not shown)
Line 1:
In mathematics, the '''continuum function''' is <math>\kappa\mapsto 2^\kappa</math>, i.e. raising 2 to the power of &kappa; using [[cardinal exponentiation]].<ref>{{Cite journal |last=Cody |first=Brent |last2=Magidor |first2=Menachem |date=February 2014 |title=On supercompactness and the continuum function |url=https://doi.org/10.1016/j.apal.2013.09.001 |journal=[[Annals of Pure and Applied Logic]] |volume=165 |issue=2 |pages=620–630 |doi=10.1016/j.apal.2013.09.001 |issn=0168-0072|arxiv=1306.0449 }}</ref> Given a [[cardinal number]], it is the cardinality of the [[power set]] of a set of the given cardinality.
{{unref |date=March 2024}}
In mathematics, the '''continuum function''' is <math>\kappa\mapsto 2^\kappa</math>, i.e. raising 2 to the power of &kappa; using [[cardinal exponentiation]]. Given a [[cardinal number]], it is the cardinality of the [[power set]] of a set of the given cardinality.
 
==See also==
Line 11 ⟶ 10:
[[Category:Cardinal numbers]]
 
== References ==
 
{{Reflist}}{{settheory-stub}}