Carmichael's totient function conjecture: Difference between revisions

Content deleted Content added
Other results: fixed typo
Tags: Mobile edit Mobile web edit
 
(3 intermediate revisions by 2 users not shown)
Line 1:
{{shortShort description|mathematicsProblem conceptin number theory on equal totients}}
 
In mathematics, '''Carmichael's totient function conjecture''' concerns the [[Multiplicity (mathematics)|multiplicity]] of values of [[Euler's totient function]] ''φ''(''n''), which counts the number of integers less than and [[coprime]] to ''n''. It states that, for every ''n'' there is at least one other integer ''m'' ≠ ''n'' such that ''φ''(''m'') = ''φ''(''n'').
Line 189:
* {{citation |last=Guy | first=Richard K. | authorlink=Richard K. Guy | title=Unsolved problems in number theory | publisher=[[Springer-Verlag]] |edition=3rd | year=2004 |isbn=978-0-387-20860-2 | zbl=1058.11001 | at=B39 }}.
*{{citation
| last = Klee | first = V. L., Jr. | author-link = Victor Klee
| doi = 10.1090/S0002-9904-1947-08940-0
| journal = [[Bulletin of the American Mathematical Society]]
Line 225:
 
==External links==
*{{mathworld|title=Carmichael's Totient Function Conjecture|urlname=CarmichaelsTotientFunctionConjecture|mode=cs2}}
 
[[Category:Multiplicative functions]]