Continuous embedding: Difference between revisions

Content deleted Content added
Definition: TeX --> text where practical, expanded the wording a little, +wlink
 
(19 intermediate revisions by 14 users not shown)
Line 3:
==Definition==
 
Let ''X'' and ''Y'' be two normed vector spaces, with norms ||&middot;·||<sub>''X''</sub> and ||&middot;·||<sub>''Y''</sub> respectively, such that ''X''&nbsp;&sube;&nbsp;''Y''. If the [[identity function|inclusion map (identity function)]]
 
:<math>i : X \hookrightarrow Y : x \mapsto x</math>
 
is continuous, i.e. if there exists a constant ''C''&nbsp;&ge;>&nbsp;0 such that
 
:<math>\| x \|_{Y}_Y \leq C \| x \|_{X}_X</math>
 
for every ''x'' in ''X'', then ''X'' is said to be '''continuously embedded''' in ''Y''. Some authors use the hooked arrow "↪" to denote a continuous embedding, i.e. "''X''&nbsp;↪&nbsp;''Y''" means "''X'' and ''Y'' are normed spaces with ''X'' continuously embedded in ''Y''". This is a consistent use of notation from the point of view of the [[category of topological vector spaces]], in which the [[morphism]]s ("arrows") are the [[continuous linear map]]s.
for every ''x'' in ''X'', then ''X'' is said to be '''continuously embedded''' in ''Y''.
 
==Examples==
 
* A finite-dimensional example of a continuous embedding is given by a natural embedding of the [[real line]] ''X''&nbsp;=&nbsp;'''R''' into the plane ''Y''&nbsp;=&nbsp;'''R'''<sup>2</sup>, where both spaces are given the Euclidean norm:
 
::<math>i : \mathbf{R} \to \mathbf{R}^2 : x \mapsto (x, 0)</math>
 
:In this case, ||''x''||<sub>''X''</sub>&nbsp;=&nbsp;||''x''||<sub>''Y''</sub> for every real number ''X''. Clearly, the optimal choice of constant ''C'' is ''C''&nbsp;=&nbsp;1.
 
* An infinite-dimensional example of a continuous embedding is given by the [[Rellich–Kondrachov theorem]]: let Ω&nbsp;⊆&nbsp;'''R'''<sup>''n''</sup> be an [[open set|open]], [[bounded set|bounded]], [[Lipschitz ___domain]], and let 1&nbsp;≤&nbsp;''p''&nbsp;&lt;&nbsp;''n''. Set
 
::<math>p^{*} = \frac{n p}{n - p}.</math>
 
:Then the Sobolev space ''W''<sup>1,''p''</sup>(&Omega;;&nbsp;'''R''') is continuously embedded in the [[Lp space|''L''<sup>''p''</sup> space]] ''L''<sup>''p''<sup>&lowast;</sup></sup>(&Omega;;&nbsp;'''R'''). In fact, for 1&nbsp;&le;&nbsp;''q''&nbsp;&lt;&nbsp;''p''<sup>&lowast;</sup>, this embedding is [[compactly embedded|compact]]. The optimal constant ''C'' will depend upon the geometry of the ___domain &Omega;.
 
* Infinite-dimensional spaces also offer examples of ''discontinuous'' embeddings. For example, consider
 
::<math>X = Y = C^0 ([0, 1]; \mathbf{R}),</math>
 
:the space of continuous real-valued functions defined on the unit interval, but equip ''X'' with the ''L''<sup>1</sup> norm and ''Y'' with the [[supremum norm]]. For ''n''&nbsp;&isin;&nbsp;'''N''', let ''f''<sub>''n''</sub> be the [[continuous function|continuous]], [[piecewise linear function]] given by
 
::<math>f_n (x) = \begin{cases} - n^2 x + n , & 0 \leq x \leq \tfrac 1 n; \\ 0, & \text{otherwise.} \end{cases}</math>
 
:Then, for every ''n'', ||''f''<sub>''n''</sub>||<sub>''Y''</sub>&nbsp;=&nbsp;||''f''<sub>''n''</sub>||<sub>∞</sub>&nbsp;=&nbsp;''n'', but
 
::<math>\| f_n \|_{L^1} = \int_0^1 | f_n (x) | \, \mathrm{d} x = \frac1{2}.</math>
 
:Hence, no constant ''C'' can be found such that ||''f''<sub>''n''</sub>||<sub>''Y''</sub>&nbsp;&le;&nbsp;''C''||''f''<sub>''n''</sub>||<sub>''X''</sub>, and so the embedding of ''X'' into ''Y'' is discontinuous.
 
==See also==
 
* [[CompactlyCompact embeddedembedding]]
 
==ReferenceReferences==
 
* {{cite book | authorauthor1=RennardyRenardy, M., &|author2= Rogers, R.C. |name-list-style=amp | title=An Introduction to Partial Differential Equations | publisher=Springer-Verlag, Berlin | year=1992 | idisbn=ISBN 3-540-97952-2 }}
 
[[Category:Functional analysis]]