Content deleted Content added
Fgnievinski (talk | contribs) m Fgnievinski moved page Multiple correlation to Coefficient of multiple correlation over redirect |
Undid revision 1216542234 by 95.83.136.159 (talk) Tags: Undo Mobile edit Mobile web edit Advanced mobile edit |
||
(12 intermediate revisions by 11 users not shown) | |||
Line 1:
{{Short description|Statistical concept}}
{{More footnotes|date=November 2010}}
In [[statistics]], the '''coefficient of
The coefficient of multiple correlation takes values between 0 and 1. Higher values indicate higher predictability of the [[dependent and independent variables|dependent variable]] from the [[dependent and independent variables|independent variables]], with a value of 1 indicating that the predictions are exactly correct and a value of 0 indicating that no linear combination of the independent variables is a better predictor than is the fixed [[mean]] of the dependent variable.<ref>[http://mtweb.mtsu.edu/stats/regression/level3/multicorrel/multicorrcoef.htm Multiple correlation coefficient]</ref>
{| class="wikitable"
|Correlation Coefficient (r)
|Direction and Strength of Correlation
|-
|1
|Perfectly positive
|-
|0.8
|Strongly positive
|-
|0.5
|Moderately positive
|-
|0.2
|Weakly positive
|-
|0
|No association
|-
| -0.2
|Weakly negative
|-
| -0.5
|Moderately negative
|-
| -0.8
|Strongly negative
|-
| -1
|Perfectly negative
|}
The coefficient of multiple correlation is known as the square root of the [[coefficient of determination]], but under the particular assumptions that an intercept is included and that the best possible linear predictors are used, whereas the coefficient of determination is defined for more general cases, including those of nonlinear prediction and those in which the predicted values have not been derived from a model-fitting procedure.
Line 27 ⟶ 58:
If all the predictor variables are uncorrelated, the matrix <math>R_{xx}</math> is the identity matrix and <math>R^2</math> simply equals <math>\mathbf{c}^\top\, \mathbf{c}</math>, the sum of the squared correlations with the dependent variable. If the predictor variables are correlated among themselves, the inverse of the correlation matrix <math>R_{xx}</math> accounts for this.
The squared coefficient of multiple correlation can also be computed as the fraction of variance of the dependent variable that is explained by the independent variables, which in turn is 1 minus the unexplained fraction. The unexplained fraction can be computed as the [[sum of
==Properties==
Line 46 ⟶ 77:
{{DEFAULTSORT:Multiple Correlation}}
[[Category:Correlation indicators]]
[[Category:Regression analysis]]
|