Exponential-logarithmic distribution: Difference between revisions

Content deleted Content added
Fixed how the math looks and change notation for hypergeometric and polylogarithm functions
fix dead link
 
(31 intermediate revisions by 21 users not shown)
Line 1:
{{Short description|Family of lifetime distributions with decreasing failure rate}}
{{Wikify|date=August 2009}}
{{Infobox probability distribution
 
| name = <CAPTION>Exponential-Logarithmic distribution (EL)</CAPTION>
In [[probability theory]] and [[statistics]], the '''exponential-logarithmic (EL) distribution''' is a family of lifetime [[probability distribution|distributions]] with
| type = continuous
decreasing [[failure rate]], defined on the interval&nbsp;(0,&nbsp;&infin;). This distribution is [[Parametric family|parameterized]] by two parameters <math>p\in(0,1)</math> and <math>\beta >0</math>.
| pdf_image = <TH>[[File:Pdf EL.png|300px|Probability density function (pdf)</TH>]]
 
| cdf_image =
<TABLE class="infobox bordered wikitable"
| notation =
style="FONT-SIZE: 95%; MARGIN-BOTTOM: 0.5em; MARGIN-LEFT: 1em; WIDTH: 325px">
| parameters = <math>p\in (0,1)</math><br><math>\beta >0</math>
<CAPTION>Exponential-Logarithmic distribution (EL)</CAPTION>
| support <TD> = <math>x\in([0,\infty)</math></TD></TR>
<TR style="TEXT-ALIGN: center">
:<math>| pdf f(x; p, \beta) := \left( <math>\frac{1}{-\ln p} \right)times \frac{\beta(1-p) e^{-\beta x}}{1-(1-p) e^{-\beta x}} </math>
<TD colSpan=2>Probability density function<BR>[[File:Pdf EL.png]]</TD></TR>
| cdf <TD> = <math>1-\frac{\ln(1-(1-p) e^{-\beta x})}{\ln p}</math></TD></TR>
<TR style="TEXT-ALIGN: center">
| mean <TD> = <math>-\frac{\text{polylog}(2,1-p)}{\beta\ln p}</math></TD></TR>
<TD colSpan=2>Hazard function<BR>[[File:Hazard EL.png]]</TD></TR>
| median <TD> = <math>\frac{\ln(1+\sqrt{p})}{\beta}</math></TD></TR>
<TR vAlign=top>
| mode = 0
<TH>Parameters</TH>
| variance <TD><SPAN>= <math>p-\infrac{2 \text{polylog}(03,1-p)}{\beta^2\ln p}</math></SPAN><BR><SPANbr> <math>-\frac{ \text{polylog}^2(2,1-p)}{\beta^2\ln^2 >0p}</math></SPAN></TD></TR>
| skewness =
<TR>
| kurtosis =
<TH>Support</TH>
| entropy =
<TD><math>x\in(0,\infty)</math></TD></TR>
| mgf <TD> = <math>-\frac{\beta(1-p)}{\ln p (\beta-t)}</math><br> <math> \text{hypergeom}_{2,1} </math><br> <math>([1,\frac{\beta-t}{\beta}],[\frac{2\beta-t}{\beta}],1-p)</math></TD></TR>
<TR>
| cf =
<TH>Probability density function (pdf)</TH>
| pgf =
<TD><math>\frac{1}{-\ln p} \times \frac{\beta(1-p) e^{-\beta
| fisher =
x}}{1-(1-p) e^{-\beta x}}</math></TD></TR>
}}
<TR>
In [[probability theory]] and [[statistics]], the '''exponentialExponential-logarithmicLogarithmic (EL) distribution''' distribution is a family of lifetime [[probability distribution|distributions]] with
<TH>Cumulative distribution function (cdf)</TH>
decreasing [[failure rate]], defined on the interval&nbsp;([0,&nbsp;&infin;). This distribution is [[Parametric family|parameterized]] by two parameters <math>p\in(0,1)</math> and <math>\beta >0</math>.
<TD><math>1-\frac{\ln(1-(1-p) e^{-\beta x})}{\ln p}</math></TD></TR>
<TR>
<TH>Mean</TH>
<TD><math>-\frac{\text{polylog}(2,1-p)}{\beta\ln p}</math></TD></TR>
<TR>
<TH>Median</TH>
<TD><math>\frac{\ln(1+\sqrt{p})}{\beta}</math></TD></TR>
<TR>
<TH>Mode</TH>
<TD>0</TD></TR>
<TR>
<TH>Variance</TH>
<TD><math>-\frac{2 \text{polylog}(3,1-p)}{\beta^2\ln p}-\frac{ \text{polylog}^2(2,1-p)}{\beta^2\ln^2 p}</math></TD></TR>
<TR>
<TH>Skewness</TH>
<TD>&nbsp;</TD></TR>
<TR>
<TH>Excess kurtosis</TH>
<TD>&nbsp;</TD></TR>
<TR>
<TH>Moment-generating function (mgf)</TH>
<TD><math>-\frac{\beta(1-p)}{\ln p (\beta-t)}</math><br> <math> \text{hypergeom}_{2,1}([1,\frac{\beta-t}{\beta}],[\frac{2\beta-t}{\beta}],1-p)</math></TD></TR>
<TR>
<TH>Characteristic function</TH>
<TD>&nbsp;</TD></TR>
</TABLE>
 
== Introduction ==
 
The study of lengths of the lives of organisms, devices, materials, etc., is of major importance in the [[biological]] and [[engineering]] sciences. In general, the life timelifetime of a device is expected to exhibit decreasing failure rate (DFR) when its behavior over time is characterized by 'work-hardening' (in engineering terms) or 'immunity' (in biological terms).
 
The exponential-logarithmic model, together with its various properties, are studied by Tahmasbi and Rezaei (2008).<ref name="tahmasbi2008">Tahmasbi, R., Rezaei, S., (2008), "A two-parameter lifetime distribution with decreasing failure rate", ''Computational Statistics and Data Analysis'', Vol. 52 (8), pp. 3889-3901. {{doi|10.1016/j.csda.2007.12.002}}</ref>
This model is obtained under the concept of population heterogeneity (through the process of
compounding).
 
== Properties of the distribution ==
 
=== Distribution ===
 
The [[probability density function]] (pdf) of the EL distribution is given by Tahmasbi and Rezaei (2008)<ref name="tahmasbi2008"/>
 
:<math> f(x; p, \beta) := \left( \frac{1}{-\ln p}\right) \frac{\beta(1-p)e^{\beta x}}{1-(1-p)e^{\beta x}} </math>
:<math> f(x; p, \beta) := \left( \frac{1}{-\ln p}\right) \frac{\beta(1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}} </math>
where <math>p\in (0,1)</math> and <math>\beta >0</math>. This function is strictly decreasing in <math>x</math> and tends to zero as <math>x\rightarrow \infty</math>. The EL distribution has its [[modeMode (statistics)|modal value]] given,of the density at x=0, given by
:<math>\frac{\beta (1-p)}{-p \ln p}</math>
:<math>\frac{\beta (1-p)}{-p \ln p}</math>
The EL reduces to the [[exponential distribution]] with rate parameter <math>\beta</math>, as <math>p\rightarrow 1</math>.
 
The [[cumulative distribution function]] is given by
Line 80 ⟶ 57:
 
: <math>F_{N,D}(n,d,z):=\sum_{k=0}^\infty \frac{ z^k \prod_{i=1}^p\Gamma(n_i+k)\Gamma^{-1}(n_i)}{\Gamma(k+1)\prod_{i=1}^q\Gamma(d_i+k)\Gamma^{-1}(d_i)}</math>
where <math>n=[n_1, n_2,\dots , n_N]</math> and <math>{d}=[d_1, d_2, \dots , d_D]</math>.
 
The moments of <math>X</math> can be derived from <math>M_X(t)</math>. For
Line 86 ⟶ 63:
:<math>E(X^r;p,\beta)=-r!\frac{\operatorname{Li}_{r+1}(1-p) }{\beta^r\ln p},</math>
where <math>\operatorname{Li}_a(z)</math> is the [[polylogarithm]] function which is defined as
follows (Lewin, 1981) :<ref>Lewin, L., (1981,) ''Polylogarithms and Associated Functions'', North
Holland, Amsterdam.</ref>
:<math>\operatorname{Li}_a(z) =\sum_{k=1}^{\infty}\frac{z^k}{k^a}.</math>
Line 97 ⟶ 74:
 
=== The survival, hazard and mean residual life functions ===
[[File:Hazard EL.png|thumb|300px|Hazard function]]
 
The [[survival function]] (also known as the reliability
function) and [[hazard function]] (also known as the failure rate
Line 115 ⟶ 92:
Let ''U'' be a [[random variate]] from the standard [[Uniform distribution (continuous)|uniform distribution]].
Then the following transformation of ''U'' has the EL distribution with
parameters ''p'' and&nbsp;''&beta;β'':
 
: <math> X = \frac{1}{\beta}\ln \left(\frac{1-p}{1-p^U}\right).</math>
 
== Estimation of the parameters ==
To estimate the parameters, the [[Expectation-maximization algorithm|EM algorithm]] is used. This method is discussed by Tahmasbi and Rezaei (2008).<ref name="tahmasbi2008"/> The EM iteration is given by
 
: <math>\beta^{(h+1)} = n \left( \sum_{i=1}^n\frac{x_i}{1-(1-p^{(h)})e^{-\beta^{(h)}x_i}} \right)^{-1},</math>
Line 126 ⟶ 103:
: <math>p^{(h+1)}=\frac{-n(1-p^{(h+1)})} { \ln( p^{(h+1)}) \sum_{i=1}^n
\{1-(1-p^{(h)})e^{-\beta^{(h)} x_i}\}^{-1}}.</math>
 
==Related distributions==
The EL distribution has been generalized to form the Weibull-logarithmic distribution.<ref>Ciumara, Roxana; Preda, Vasile (2009) [https://www.proquest.com/openview/7f1efa684243ce36231867620f09373a/1 "The Weibull-logarithmic distribution in lifetime analysis and its properties"]. In: L. Sakalauskas, C. Skiadas and
E. K. Zavadskas (Eds.) [http://www.vgtu.lt/leidiniai/leidykla/ASMDA_2009/ ''Applied Stochastic Models and Data Analysis''] {{Webarchive|url=https://web.archive.org/web/20110518043330/http://www.vgtu.lt/leidiniai/leidykla/ASMDA_2009/ |date=2011-05-18 }}, The XIII International Conference, Selected papers. Vilnius, 2009 {{ISBN|978-9955-28-463-5}}</ref>
 
If ''X'' is defined to be the [[random variable]] which is the minimum of ''N'' independent realisations from an [[exponential distribution]] with rate parameter ''&beta;'', and if ''N'' is a realisation from a [[logarithmic distribution]] (where the parameter ''p'' in the usual parameterisation is replaced by {{nowrap|1=(1&nbsp;&minus;&nbsp;''p'')}}), then ''X'' has the exponential-logarithmic distribution in the parameterisation used above.
 
==References==
{{Reflist}}
 
{{ProbDistributions|continuous-semi-infinite}}
 
[[Category:Continuous distributions]]