Content deleted Content added
Phantomsteve (talk | contribs) add a couple of wikilinks |
No edit summary |
||
(12 intermediate revisions by 10 users not shown) | |||
Line 1:
{{Short description|Sequence of orthogonal functions on [0, ∞)}}
[[Image:LegendreRational1.png|thumb|300px|Plot of the Legendre rational functions for n=0,1,2 and 3 for ''x'' between 0.01 and 100.]]
In [[mathematics]], the '''Legendre rational functions''' are a sequence of [[orthogonal functions]]
:<math>R_n(x) = \frac{\sqrt{2}}{x+1}\,L_n\left(\frac{x-1}{x+1}\right)</math>▼
where <math>L_n(x)</math> is a [[Legendre polynomial]]. These functions are [[eigenfunction]]s of the singular [[Sturm-Liouville problem]]:▼
:<math>(x+1)\partial_x(x\partial_x((x+1)v(x)))+\lambda v(x)=0</math>▼
A rational Legendre function of degree ''n'' is defined as:
▲where <math>
<math display="block">(x+1) \frac{d}{dx}\left(x \frac{d}{dx} \left[\left(x+1\right) v(x)\right]\right) + \lambda v(x) = 0</math>
with eigenvalues
▲:<math>\lambda_n=n(n+1)\,</math>
== Properties==
Line 17 ⟶ 15:
=== Recursion ===
▲:<math>R_{n+1}(x)=\frac{2n+1}{n+1}\,\frac{x-1}{x+1}\,R_n(x)-\frac{n}{n+1}\,R_{n-1}(x)\quad\mathrm{for\,n\ge 1}</math>
and
▲:<math>2(2n+1)R_n(x)=(x+1)^2(\partial_x R_{n+1}(x)-\partial_x R_{n-1}(x))+(x+1)(R_{n+1}(x)-R_{n-1}(x))</math>
=== Limiting behavior ===
[[Image:LegendreRational2.png|thumb|300px|Plot of the seventh order (''n=7'') Legendre rational function multiplied by ''1+x'' for ''x'' between 0.01 and 100. Note that there are ''n'' zeroes arranged symmetrically about ''x=1'' and if ''x''<sub>0</sub> is a zero, then
It can be shown that
▲:<math>\lim_{x\rightarrow \infty}(x+1)R_n(x)=\sqrt{2}</math>
and
▲
=== Orthogonality ===
where <math>\delta_{nm}</math> is the [[Kronecker delta]] function.
== Particular values ==
<math display="block">\begin{align}
R_4(x) &= \frac{\sqrt{2}}{x+1}\,\frac{x^4-16x^3+36x^2-16x+1}{(x+1)^4}
\end{align}</math>
== References ==
* {{cite journal
| last = Zhong-Qing
| first = Wang
|
| year = 2005
| title = A mixed spectral method for incompressible viscous fluid flow in an infinite strip
| journal =
| publisher = Sociedade Brasileira de Matemática Aplicada e Computacional
| volume = 24
| issue = 3
| doi = 10.1590/S0101-82052005000300002
|
}}
[[Category:
|